Toggle light / dark theme

US Navy paying D-Wave to train them on QC.


A division of the U.S. Navy intends to pay Canadian company D-Wave $11 million to learn how to use its quantum computing infrastructure, according to a federal filing posted online on Monday.

The unit seeking this training is the Navy’s Space and Naval Warfare Systems Center Pacific, known as SPAWAR or SSC-PAC for short, which is headquartered in San Diego and has previously researched amphibious throwable robots, unmanned aerial vehicles, virtual reality, and many other technologies. The filing does not actually cover the cost of quantum computing hardware. But NASA has been allowing SPAWAR scientists to learn how to use the D-Wave machine that it operates with Google at the NASA Ames Research Center, the San Diego Union-Tribune reported last month.

Quantum computers employ quantum bits, or qubits, each of which can be zero or one or both, unlike the regular bits in classical computers. The superposition of qubits lets machines perform great numbers of computations at once, making a quantum computer highly desirable for certain types of processes. Google recently found that quantum annealing with D-Wave hardware is 100 times faster than simulated annealing on a classic computer chip.

Pressure is on DARPA by US Military to speed up on completing the soft Exosuit.


The clothing-like Soft Exosuit has been described as a “Wearable Robot” by the U.S. Defense Advanced Projects Research Agency (DARPA) that’s commissioning universities and research institutions to advance this military technology. The DARPA Soft Exosuit is part of the agency’s Warrior Web program.

A prototype Soft Exosuit had a series of webbing straps around the lower half of the body with a low-power microprocessor and a network of flexible strain sensors. These electronics act as the “brain” and “nervous system” of the Soft Exosuit. They continuously monitor data signals, including suit tension, wearer position (walking, running, crouched) and more.

In 2014, DARPA awarded $2.9 million to The Wyss Institute for Biologically Inspired Engineering at Harvard University to further develop its Soft Exosuit, other versions of which might eventually help persons (military and civilian) with limited mobility.

Friends have been asking me to write something on space exploration and my campaign policy on it, so here it is just out on TechCrunch:


When people think about rocket ships and space exploration, they often imagine traveling across the Milky Way, landing on mysterious planets and even meeting alien life forms.

In reality, humans’ drive to get off Planet Earth has led to tremendous technological advances in our mundane daily lives — ones we use right here at home on terra firma.

I recently walked through Boston’s Logan International Airport; a NASA display reminded me that GPS navigation, anti-icing systems, memory foam and LED lights were all originally created for space travel. Other inventions NASA science has created include the pacemaker, scratch-resistant lenses and the solar panel.

I do see delays of self-driving 18 wheelers across the US. Too many laws & regulations would need to change, consumer safety & protection advocacy groups, etc. will delay this in the US.


SAN FRANCISCO – Picture an 18-wheel truck barreling down the highway with 80,000 pounds of cargo and no one but a robot at the wheel.

To many, that might seem a frightening idea, even at a time when a few dozen of Google’s driverless cars are cruising city streets in California, Texas, Washington and Arizona.

But Anthony Levandowski, a robot-loving engineer who helped steer Google’s self-driving technology, is convinced autonomous big rigs will be the next big thing on the road to a safer transportation system.

ACTON, Australia, May 16 (UPI) — A pair of physicists in Australia have trained an artificial intelligence system to replicate the experiment that won the 2001 Nobel Prize.

The experiment involves what is known as a Bose-Einstein condensate, the trapping of an ultra-cool gas in a series of lasers.

At just a billionth of a degree above absolute zero, Bose-Einstein condensates constitute some of the coldest temperatures in the universe — colder than interstellar space.

Read more

Michio Kaku and Ray Kurzweil explains the exponential rate at which Technological Singularity is approaching and the future is far near than we can Imagine!

2029 : Singularity Year — Neil deGrasse Tyson & Ray Kurzweil — https://www.youtube.com/watch?v=EyFYFjESkWU

Life Changing Future Technologies [Full Documentary] : https://www.youtube.com/watch?v=TRSlkx5qaSk

The technological singularity is a hypothetical event in which artificial general intelligence (constituting, for example, intelligent computers, computer networks, or robots) would be capable of recursive self-improvement (progressively redesigning itself), or of autonomously building ever smarter and more powerful machines than itself, up to the point of a runaway effect—an intelligence explosion—that yields an intelligence surpassing all current human control or understanding. Because the capabilities of such a superintelligence may be impossible for a human to comprehend, the technological singularity is the point beyond which events may become unpredictable or even unfathomable to human intelligence.

This post is a status update on one of the most powerful tools humanity will ever create: nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, materials science, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Read more

This blog is a status update on one of the most powerful tools humanity will ever create: Nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, material sciences, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Read more