Toggle light / dark theme

Researchers at The Jackson Laboratory (JAX), the Broad Institute of MIT and Harvard, and Yale University, have used artificial intelligence to design thousands of new DNA switches that can precisely control the expression of a gene in different cell types. Their new approach opens the possibility of controlling when and where genes are expressed in the body, for the benefit of human health and medical research, in ways never before possible.

“What is special about these synthetically designed elements is that they show remarkable specificity to the target cell type they were designed for,” said Ryan Tewhey, PhD, an associate professor at The Jackson Laboratory and co-senior author of the work. “This creates the opportunity for us to turn the expression of a gene up or down in just one tissue without affecting the rest of the body.”

In recent years, genetic editing technologies and other gene therapy approaches have given scientists the ability to alter the genes inside living cells. However, affecting genes only in selected cell types or tissues, rather than across an entire organism, has been difficult. That is in part because of the ongoing challenge of understanding the DNA switches, called cis-regulatory elements (CREs), that control the expression and repression of genes.

In conclusion, don’t accept what the AI tells you as absolute truth. Don’t make critical decisions based on its answers. And remember that you sometimes have to negotiate with the AI before it’s willing to give you helpful answers.

This test is yet another case where I’ve been able to turn to the AI and find an answer for a very me-specific question without coding in minutes.

If you have a question that requires a lot of text or numerical analysis, consider running it by ChatGPT or one of the other AIs. You might get a useful answer in minutes.

If you’re ever faced with trying to pick up a grain of rice with a pair of chopsticks, spare a thought for the scientists behind this latest innovation, which has been called “a medical breakthrough on the verge of happening.” They’ve painstakingly built a soft robot with the capacity to carry different types of drugs through the body. It’s the size of a grain of rice, and can be driven to various internal targets via magnetic fields.

Researchers in the School of Mechanical and Aerospace Engineering (MAE) at Nanyang Technological University, Singapore (NTU Singapore), have built on earlier work to create a grain-sized soft robot that can enter the body and be controlled by magnetic fields to travel to a specific target. Once there, it can quickly or slowly release the medication it has stored in its tiny frame.