RMIT engineers create a brain-inspired device that sees and thinks in real time, advancing robotics and autonomous tech.
Category: robotics/AI – Page 205
AlphaEvolve: A Gemini-powered coding agent for designing advanced algorithms
Large language models (LLMs) are remarkably versatile. They can summarize documents, generate code or even brainstorm new ideas. And now we’ve expanded these capabilities to target fundamental and highly complex problems in mathematics and modern computing.
Today, we’re announcing AlphaEvolve, an evolutionary coding agent powered by large language models for general-purpose algorithm discovery and optimization. AlphaEvolve pairs the creative problem-solving capabilities of our Gemini models with automated evaluators that verify answers, and uses an evolutionary framework to improve upon the most promising ideas.
AlphaEvolve enhanced the efficiency of Google’s data centers, chip design and AI training processes — including training the large language models underlying AlphaEvolve itself. It has also helped design faster matrix multiplication algorithms and find new solutions to open mathematical problems, showing incredible promise for application across many areas.
Spin-based memory advance brings brain-like computing closer to reality
Researchers at National Taiwan University have developed a new type of spintronic device that mimics how synapses work in the brain—offering a path to more energy-efficient and accurate artificial intelligence systems.
In a study published in Advanced Science, the team introduced three novel memory device designs, all controlled purely by electric current and without any need for an external magnetic field.
Among the devices, the one based on “tilted anisotropy” stood out. This optimized structure was able to achieve 11 stable memory states with highly consistent switching behavior.
Q&A: A generative AI technique for designing RNA with improved function
Ribonucleic acid, also called RNA, is a molecule present in all living cells. It plays a critical role in transmitting genetic instructions from DNA and creating proteins. With the power to execute a plethora of functions, the little RNA “messenger” has led to important innovations across therapeutics, diagnostics, and vaccines, and made us rethink our understanding of life itself.
A team of researchers from Boston University’s Biological Design Center and the Department of Biomedical Engineering recently made significant steps forward in the development of the next generation of computational RNA tools. They recently published a study in Nature Communications describing a generative AI technique for designing different types of RNA molecules with improved function.
Much like a large language model that can be used to compose entirely new texts, the model can compose new RNA sequences tailored for specific tasks in the cell or in a diagnostic assay. Their research has shown that it’s possible to predict and generate RNA sequences that have specific functions across a broad array of potential applications.
Handy octopus robot can adapt to its surroundings
Scientists inspired by the octopus’s nervous system have developed a robot that can decide how to move or grip objects by sensing its environment.
The team from the University of Bristol’s Faculty of Science and Engineering designed a simple yet smart robot which uses fluid flows of air or water to coordinate suction and movement as octopuses do with hundreds of suckers and multiple arms.
The study, published in the journal Science Robotics, shows how a soft robot can use suction flow not just to stick to things, but also to sense its environment and control its own actions—just like an octopus.