Toggle light / dark theme

Faster Fusion Reactor Calculations Thanks to AI

Fusion reactor technologies are well-positioned to contribute to our future power needs in a safe and sustainable manner. Numerical models can provide researchers with information on the behavior of the fusion plasma, as well as valuable insight on the effectiveness of reactor design and operation. However, to model the large number of plasma interactions requires a number of specialized models that are not fast enough to provide data on reactor design and operation.

Aaron Ho from the Science and Technology of Nuclear Fusion group in the department of Applied Physics at Eindhoven University of Technology has explored the use of machine learning approaches to speed up the numerical simulation of core plasma turbulent transport. Ho defended his thesis on March 17th.

The ultimate goal of research on fusion reactors is to achieve a net power gain in an economically viable manner. To reach this goal, large intricate devices have been constructed, but as these devices become more complex, it becomes increasingly important to adopt a predict-first approach regarding its operation. This reduces operational inefficiencies and protects the device from severe damage.

Robots of the future at Boston Dynamics

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

“60 Minutes” is the most successful television broadcast in history. Offering hard-hitting investigative reports, interviews, feature segments and profiles of people in the news, the broadcast began in 1968 and is still a hit, over 50 seasons later, regularly making Nielsen’s Top 10.

Watch full episodes: http://cbsn.ws/1Qkjo1F
Get more “60 Minutes” from “60 Minutes: Overtime”: http://cbsn.ws/1KG3sdr.
Follow “60 Minutes” on Instagram: http://bit.ly/23Xv8Ry.
Like “60 Minutes” on Facebook: http://on.fb.me/1Xb1Dao.
Follow “60 Minutes” on Twitter: http://bit.ly/1KxUsqX

Download the CBS News app: http://cbsn.ws/1Xb1WC8
Try Paramount+ free: https://bit.ly/2OiW1kZ

For video licensing inquiries, contact: [email protected]

DJI’s success fuels Shenzhen’s rise as centre of global drone industry

Huaqiangbei, the world’s largest electronics wholesale market area in the Chinese technology hub of Shenzhen, has become the latest Wonderland for geeks, the way Tokyo’s Akihabara was to otaku during the tech bubble at the turn of the millennium. Amid the warren of closet-sized shops and makeshift stalls, the latest catalogue of smartphones, LED lights, holograms, electronic parts and every type of gadget imaginable compete for attention and the spending yuan of consumers.


Shenzhen has become an international hotspot for the unmanned aerial vehicle industry, following the global success of drone giant DJI.

Home | Philadelphia

The company working on a militarized version of BD’s Spot. It looks like just a straight copy. Sadly, no FB page, and didn’t see any other robots on there besides this. I think some humanoid robot competition would be helpful.


© 2020 Ghost Robotics Corporation® Ghost Robotics & Logo are registered trademarks.

Privacy & Legal

Roboreptile climbs like a real lizard

While a Mars rover can explore where no person has gone before, a smaller robot at the University of the Sunshine Coast in Australia could climb to new heights by mimicking the movements of a lizard.

Simply named X-4, the university’s climbing has allowed a team of researchers to test and replicate how a lizard moves in the hope that their findings will inspire next-generation robotics design for disaster relief, remote surveillance and possibly even space exploration.

In a published today in Proceedings of the Royal Society B, the team states that have optimized their movement across difficult terrain over many years of evolution.

A cellular platform for the development of synthetic living machines

Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog (Xenopus laevis) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects.

‘Neutrobots’ smuggle drugs to the brain without alerting the immune system

A team of researchers from the Harbin Institute of Technology along with partners at the First Affiliated Hospital of Harbin Medical University, both in China, has developed a tiny robot that can ferry cancer drugs through the blood-brain barrier (BBB) without setting off an immune reaction. In their paper published in the journal Science Robotics, the group describes their robot and tests with mice. Junsun Hwang and Hongsoo Choi, with the Daegu Gyeongbuk Institute of Science and Technology in Korea, have published a Focus piece in the same journal issue on the work done by the team in China.

For many years, medical scientists have sought ways to deliver drugs to the brain to treat health conditions such as brain cancers. Because the brain is protected by the skull, it is extremely difficult to inject them directly. Researchers have also been stymied in their efforts by the BBB—a filtering mechanism in the capillaries that supply blood to the brain and that blocks foreign substances from entering. Thus, simply injecting drugs into the bloodstream is not an option. In this new effort, the researchers used a defense cell type that naturally passes through the BBB to carry drugs to the brain.

To build their tiny robots, the researchers exposed groups of white blood cells called neutrophils to tiny bits of magnetic nanogel particles coated with fragments of E. coli material. Upon exposure, the neutrophils naturally encased the tiny robots, believing them to be nothing but E. coli bacteria. The microrobots were then injected into the bloodstream of a test mouse with a cancerous tumor. The team then applied a to the robots to direct them through the BBB, where they were not attacked, as the identified them as normal neutrophils, and into the brain and the tumor. Once there, the robots released their cancer-fighting drugs.

/* */