Toggle light / dark theme

Physicists use AI to find the most complex protein knots so far

The question of how the chemical composition of a protein—the amino acid sequence—determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure but also raise important questions about folding mechanisms and the evolution of proteins.

Smart textiles detect, sense posture and motion

Researchers at the Massachusetts Institute of Technology (MIT) Media Lab have created a novel fabrication process to produce smart textiles that comfortabl | Technology.


Using 3DKnITS, the research team created a “smart” shoe and mat, followed by building a hardware and software system capable of measuring and interpreting real-time data from the pressure sensors. An individual then performed yoga poses on the smart textile mat while the machine-learning system was able to accurately predict the individual’s motions and poses 99 percent of the time.

“Some of the early pioneering work on smart fabrics happened at the Media Lab in the late ’90s. The materials, embeddable electronics, and fabrication machines have advanced enormously since then,” said co-author Jospeh A. Paradiso, an Alexander W. Dreyfoos Professor and Director of the Responsive Environments group within the Media Lab. “It’s a great time to see our research returning to this area, for example through projects like Irmandy’s — they point at an exciting future where sensing and functions diffuse more fluidly into materials and open up enormous possibilities.”

Wicaksono now plans to refine the circuit and machine learning model since the fabrication technique has been deemed a success. This refinement involves the removing a time-consuming calibration step which currently needs to be done to each individual before the system can classify actions. Once this is done, 3DKnITS will be easier to use. Along with that, the researchers also hope to conduct tests on smart shoes outside of the lab to test how the accuracy of the sensors are affected by environmental conditions such as temperature and humidity.

Timelapse of Future Gaming Worlds (2030 & Beyond)

The story of future video games starts when artificial intelligence takes over building the games for players — while they play them. And human brains are mapped by virtual reality headsets.

This sci fi documentary also covers A.I. npc characters, Metaverse scoreboards, brain to computer chips and gaming, Elon Musk and Neuralink, and the simulation hypothesis.

Taking inspiration from the likes of Westworld, Ready Player One, Squid Game, and Inception.

A future gaming sci-fi documentary, and a timelapse look into the future.
See more of Venture City at: https://vx-c.com.

Book recommendations by Elon Musk on A.I,. future technology and innovations, and sci-fi stories (affiliate links):

• Superintelligence: Paths, Dangers, Strategies https://amzn.to/3j28WkP

Firm managers may benefit from transparency in machine-learning algorithms

In today’s business world, machine-learning algorithms are increasingly being applied to decision-making processes, which affects employment, education, and access to credit. But firms usually keep algorithms secret, citing concerns over gaming by users that can harm the predictive power of algorithms. Amid growing calls to require firms to make their algorithms transparent, a new study developed an analytical model to compare the profit of firms with and without such transparency. The study concluded that there are benefits but also risks in algorithmic transparency.

Conducted by researchers at Carnegie Mellon University (CMU) and the University of Michigan, the study appears in Management Science.

“As managers face calls to boost , our findings can help them make decisions to benefit their firms,” says Param Vir Singh, Professor of Business Technologies and Marketing at CMU’s Tepper School of Business, who coauthored the study.

Bacteria-based biohybrid microrobots on a mission to one day battle cancer

A team of scientists in the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems have combined robotics with biology by equipping E. coli bacteria with artificial components to construct biohybrid microrobots. First, as can be seen in Figure 1, the team attached several nanoliposomes to each bacterium. On their outer circle, these spherical-shaped carriers enclose a material (ICG, green particles) that melts when illuminated by near infrared light. Further towards the middle, inside the aqueous core, the liposomes encapsulate water soluble chemotherapeutic drug molecules (DOX).

The second component the researchers attached to the bacterium is . When exposed to a magnetic field, the iron oxide particles serve as an on-top booster to this already highly motile microorganism. In this way, it is easier to control the swimming of —an improved design toward an in vivo application. Meanwhile, the rope binding the liposomes and magnetic particles to the bacterium is a very stable and hard to break streptavidin and biotin complex, which was developed a few years prior and reported in a Nature article, and comes in useful when constructing biohybrid microrobots.

E. coli bacteria are fast and versatile swimmers that can navigate through material ranging from liquids to highly viscous tissues. But that is not all, they also have highly advanced sensing capabilities. Bacteria are drawn to chemical gradients such as or high acidity—both prevalent near tumor tissue. Treating cancer by injecting bacteria in proximity is known as bacteria mediated tumor therapy. The microorganisms flow to where the tumor is located, grow there and in this way activate the immune system of patients. Bacteria mediated tumor therapy has been a therapeutic approach for more than a century.

Complex motions for simple actuators

Inflatable soft actuators that can change shape with a simple increase in pressure can be powerful, lightweight, and flexible components for soft robotic systems. But there’s a problem: These actuators always deform in the same way upon pressurization.

To enhance the functionality of soft robots, it is important to enable additional and more complex modes of deformation in soft actuators.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have taken inspiration from origami to create inflatable structures that can bend, twist and move in complex, distinct ways from a single source of .

Providing embedded artificial intelligence with a capacity for palimpsest memory storage

Biological synapses are known to store multiple memories on top of each other at different time scales, much like representations of the early techniques of manuscript writing known as “palimpsest,” where annotations can be superimposed alongside traces of earlier writing.

Biological palimpsest consolidation occurs via hidden that govern synaptic efficacy at varying lifetimes. The arrangement can facilitate idle memories to be overwritten without forgetting them, while using previously unseen memories short-term. Embedded can significantly benefit from such functionality; however, the hardware has yet to be demonstrated in practice.

In a new report, now published in Science Advances, Christos Giotis and a team of scientists in Electronics and Computer Science at the University of Southampton and the University of Edinburgh, U.K., showed how the intrinsic properties of metal-oxide volatile memristors mimicked the process of biological palimpsest consolidation.

/* */