Toggle light / dark theme

*This video was recorded at Foresight’s Vision Weekend 2025 in Puerto Rico*
https://foresight.org/vw2025pr/

Our Vision Weekends are the annual festivals of Foresight Institute. Held in two countries, over two weekends, you are invited to burst your tech silos and plan for flourishing long-term futures. This playlist captures the magic of our Puerto Rico edition, held February 21–23, 2025, in the heart of Old San Juan. Come for the ideas: join the conference, unconference, mentorship hours, curated 1-1s, tech demos, biohacking sessions, prize awards, and much more. Stay for fun with new friends: join the satellite gatherings, solarpunk future salsa night, beach picnic, and surprise island adventures. This year’s main conference track is dedicated to “Paths to Progress”; meaning you will hear 20+ invited presentations from Foresight’s core community highlighting paths to progress in the following areas: Existential Hope Futures, Longevity, Rejuvenation, Cryonics, Neurotech, BCIs & WBEs, Cryptography, Security & AI, Fusion, Energy, Space, and Funding, Innovation, Progress.
══════════════════════════════════════

*About The Foresight Institute*

The Foresight Institute is a research organization and non-profit that supports the beneficial development of high-impact technologies. Since our founding in 1986 on a vision of guiding powerful technologies, we have continued to evolve into a many-armed organization that focuses on several fields of science and technology that are too ambitious for legacy institutions to support. From molecular nanotechnology, to brain-computer interfaces, space exploration, cryptocommerce, and AI, Foresight gathers leading minds to advance research and accelerate progress toward flourishing futures.

*We are entirely funded by your donations. If you enjoy what we do please consider donating through our donation page:* https://foresight.org/donate/

*Visit* https://foresight.org, *subscribe to our channel for more videos or join us here:*

IN A NUTSHELL 🔍 The ARC-AGI-2 test challenges AI models to identify visual patterns and adapt to new problems. 💡 Unlike its predecessor, ARC-AGI-2 emphasizes efficiency, assessing both problem-solving ability and resource use. 📉 Many top AI models, including OpenAI’s o1-pro, scored around 1% on the test, highlighting current limitations. 🏆 The Arc Prize 2025

Extreme cosmic events such as colliding black holes or the explosions of stars can cause ripples in spacetime, so-called gravitational waves. Their discovery opened a new window into the universe. To observe them, ultra-precise detectors are required, but designing them remains a major scientific challenge for humans.

Researchers at the Max Planck Institute for the Science of Light (MPL) have been working on how an artificial intelligence system could explore an unimaginably vast space of possible designs to find entirely new solutions. The results were recently published in the journal Physical Review X.

More than a century ago, Einstein theoretically predicted gravitational waves. They could only be directly detected in 2016 because the development of the necessary detectors was extremely complex.

Researchers from Georgia Institute of Technology (Georgia Tech) have developed a microscopic brain sensor which is so tiny that it can be placed in the small gap between your hair follicles on the scalp, slightly under the skin. The sensor is discreet enough not to be noticed and minuscule enough to be worn comfortably all day.

Brain sensors offer high-fidelity signals, allowing your brain to communicate directly with devices like computers, augmented reality (AR) glasses, or robotic limbs. This is part of what’s known as a Brain-Computer Interface (BCI).

To ensure that information maintains a high quality and isn’t overwhelmed by noise, optical amplifiers are essential. The data transmission capacity of an optical communication system is largely determined by the amplifier’s bandwidth, which refers to the range of light wavelengths it can handle.

“The amplifiers currently used in optical communication systems have a bandwidth of approximately 30 nanometers. Our amplifier, however, boasts a bandwidth of 300 nanometers, enabling it to transmit ten times more data per second than those of existing systems,” explains Peter Andrekson, Professor of Photonics at Chalmers and lead author of the study published in Nature.


The rapidly increasing data traffic is placing ever greater demands on the capacity of communication systems. In an article published in the prestigious journal Nature, a research team from Chalmers University of Technology, in Sweden, introduces a new amplifier that enables the transmission of ten times more data per second than those of current fiber-optic systems. This amplifier, which fits on a small chip, holds significant potential for various critical laser systems, including those used in medical diagnostics and treatment.

The advancement of AI technology, the growing popularity of streaming services, and the proliferation of new smart devices are among the factors driving the expected doubling of data traffic by 2030. This surge is heightening the demand for communication systems capable of managing vast amounts of information.

Currently, optical communication systems are employed for the internet, telecommunications, and other data-intensive services. These systems utilise light to transmit information over long distances. The data is conveyed through laser pulses that travel at high speeds through optical fibers, which are composed of thin strands of glass.