Toggle light / dark theme

It is called the “city brain”, an artificial intelligence system that is now being used across China – only megacities could afford them before – for everything from pandemic contact tracing to monitoring illegal public assemblies and river pollution.


Authorities at all levels are now using AI for everything from pandemic control to monitoring illegal public assemblies.

A research team from the University of Massachusetts Amherst has created an electronic microsystem that can intelligently respond to information inputs without any external energy input, much like a self-autonomous living organism. The microsystem is constructed from a novel type of electronics that can process ultralow electronic signals and incorporates a device that can generate electricity “out of thin air” from the ambient environment.

The groundbreaking research was published June 7 in the journal Nature Communications.

Jun Yao, an assistant professor in the electrical and computer engineering (ECE) and an adjunct professor in biomedical engineering, led the research with his longtime collaborator, Derek R. Lovley, a Distinguished Professor in microbiology.

Chipmaker Nvidia is acquiring DeepMap, the high-definition mapping startup announced. The company said its mapping IP will help Nvidia’s autonomous vehicle technology sector, Nvidia Drive.

“The acquisition is an endorsement of DeepMap’s unique vision, technology and people,” said Ali Kani, vice president and general manager of Automotive at Nvidia, in a statement. “DeepMap is expected to extend our mapping products, help us scale worldwide map operations and expand our full self-driving expertise.”

One of the biggest challenges to achieving full autonomy in a passenger vehicle is achieving proper localization and updated mapping information that reflects current road conditions. By integrating DeepMap’s tech, Nvidia’s autonomous stack should have greater precision, giving the vehicle enhanced abilities to locate itself on the road.

Do you want to work for Tesla remotely and test its latest Autopilot and Full Self-Driving features? You may be in luck as we learn that the automaker is now looking to hire self-driving car test drivers around the world.

You don’t even need a college education.

When it comes to Autopilot and Full Self-Driving package features, people often say that Tesla’s own paying customers are the testers and that’s mostly true, but the automaker also does plenty of internal testing.

With launch just five years away, the Gateway Exploration Robotics System — better known as Canadarm3 — has arrived at a critical point where its artificial intelligence system must be properly calibrated to meet the rigorous autonomous demands the Lunar Gateway project will impose upon it.

The AI solutions sought for Canadarm3’s vision by MDA and the Canadian Space Agency (CSA) largely relate to obstacle avoidance to prevent the arm from bumping into other structures on the lunar outpost and how to work with issues like prolonged communications blackouts and less-than-optimal lighting conditions — both of which must be overcome for the Gateway.

Speaking at a recent industry day event, Chris Langley, AI Lead at MDA for Canadarm3, related some of the challenges posed to the project by the Gateway operations plan, including only one month per year of crewed occupation initially and as little as only 8 hours of communication each week.

The growing population of avatars that use AI smarts to interact with us is a major clue.


In the fictional worlds of film and TV, artificial intelligence has been depicted as so advanced that it is indistinguishable from humans. But what if we’re actually getting closer to a world where AI is capable of thinking and feeling?

Tech company UneeQ is embarking on that journey with its “digital humans.” These avatars act as visual interfaces for customer service chatbots, virtual assistants, and other applications. UneeQ’s digital humans appear lifelike not only in terms of language and tone of voice, but also because of facial movements: raised eyebrows, a tilt of the head, a smile, even a wink. They transform a transaction into an interaction: creepy yet astonishing, human, but not quite.

What lies beneath UneeQ’s digital humans? Their 3D faces are modeled on actual human features. Speech recognition enables the avatar to understand what a person is saying, and natural language processing is used to craft a response. Before the avatar utters a word, specific emotions and facial expressions are encoded within the response.

Summary: A new deep neural network can accurately predict a healthy person’s brain age based on EEG data collected from a sleep study.

Source: AASM

A study shows that a deep neural network model can accurately predict the brain age of healthy patients based on electroencephalogram data recorded during an overnight sleep study, and EEG-predicted brain age indices display unique characteristics within populations with different diseases.

**A team of researchers affiliated with institutions in Singapore, China, Germany and the U.K., has developed an insect-computer hybrid system for use in search operations after disasters strike. **They have written a paper describing their system, now posted on the arXiv preprint server.

Because of the frequency of natural disasters such as earthquakes, fires and floods, scientists have been looking for better ways to help victims trapped in the rubble–people climbing over wreckage is both hazardous and inefficient. The researchers noted that small creatures such as insects move much more easily under such conditions and set upon the task of using a type of cockroach as a searcher to assist human efforts.

The system they came up with merges microtechnology with the natural skills of a live Madagascar hissing cockroach. These cockroaches are known for their dark brown and black body coloring and, of course, for the hissing sound they make when upset. They are also one of the few wingless cockroaches, which made them a good candidate for carrying a backpack.

The backpack created by the researchers consisted of five circuit boards connected together that hosted an IR camera, a communications chip, a CO2 sensor, a microcontroller, flash memory, a DAC converter and an IMU. The electronics-filled backpack was then affixed to the back of a cockroach. The researchers also implanted electrodes in the cockroach’s cerci–the antenna-like appendages on either side of its head. In its normal state, the cockroach uses its cerci to feel what is in its path and uses that information to make decisions about turning left or right. With the electrodes in place, the backpack could send very small jolts of electricity to the right or left cerci, inducing the cockroach to turn in a desired direction.

Testing involved setting the cockroach in a given spot and having it attempt to find a person laying in the vicinity. A general destination was preprogrammed into the hardware and then the system was placed into a test scenario, where it moved autonomously using cues from its sensor to make its way to the person serving as a test victim. The researchers found their system was able to locate the test human 94% of the time. They plan to improve their design with the goal of using the system in real rescue operations.