Toggle light / dark theme

Quantum physics is one of the most exciting and innovative areas of scientific research. By funding further research and development in quantum physics, great technological advancements will be made.

Think of every amazing future technology you’ve seen or read about in science fiction, or imagined yourself. Big innovations that change the world and cure disease or end war, and littler ones too, things that help us “think” a quick message to a friend without saying a word or share an experience from a distance. Quantum physics is enabling the creation of all of these futuristic technologies and some that didn’t even occur to most of us, making our sci-fi dreams part of our reality.

Read more

Quantum gravity is a theoretical attempt to reconcile general relativity and the quantum field theories of particle physics. The theory holds that space and time are both quantized in a way that quantum field theory doesn’t account for. Attempts to find evidence in support of the theory have focused on the gravitational effects of black holes. Now, some are using the data collected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) project that has now detected two instances of gravitational waves from the collision of black holes. And there are hints that the data has the evidence the researchers are looking for.


But Afshordi’s idea overthrows what physicists believed they knew about black holes. In Albert Einstein’s theory of general relativity, the event horizon of a black hole – the surface beyond which there is no escape – is insubstantial. Nothing special happens upon crossing it, just that there is no turning around later. If Afshordi is right, however, the inside of the black hole past the event horizon no longer exists. Instead, a Planck-length away from where the horizon would have been, quantum gravitational effects become large, and space-time fluctuations go wild. (The Planck length is a minuscule distance: about 10-35 metres, or 10-20 times the diameter of a proton.) It’s a complete break with relativity.

When he heard of the LIGO results, Afshordi realised that his so-far entirely theoretical idea could be observationally tested. If event horizons are different than expected, the gravitational-wave bursts from merging black holes should be different, too. Events picked up by LIGO should have echoes, a subtle but clear signal that would indicate a departure from standard physics. Such a discovery would be a breakthrough in the long search for a quantum theory of gravity. ‘If they confirm it, I should probably book a ticket to Stockholm,’ Afshordi said, laughing.

Read more

Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.

Researchers at the University of East Anglia (UEA) have shown that when photons — the fundamental particles of light — are created in pairs, they can emerge from different, rather than the same, location.

The ground-breaking research could have significant implications for , the theoretical basis of modern physics. Until now, the general assumption was that such photon pairs necessarily originate from single points in space.

Read more

Rigetti Computing, a leading quantum computing start-up, announced it has raised $64 million in Series A and B funding.

Rigetti Computing is building a cloud quantum computing platform for artificial intelligence and computational chemistry. Rigetti recently opened up private beta testing of Forest, its API for quantum computing in the cloud. Forest emphasizes a quantum-classical hybrid computing model, integrating directly with existing cloud infrastructure and treating the quantum computer as an accelerator.

Read more

Theoretical physicists have put forward a new hypothesis that aims to connect the world of visible physics to the hidden forces of our Universe: what if there’s a portal that bridges the gap between the standard model to dark matter and dark energy?

The idea is that the reason we struggle to understand things such as dark matter and dark energy isn’t because they don’t exist — it’s because we’ve been oblivious to a portal through which regular particles and these ‘dark particles’ interact. And it’s something that could be tested experimentally.

The idea of portals in the Universe might sound pretty crazy, but let’s be clear for a second: we’re talking portals on the quantum, teeny-tiny scale here — nothing that you could drive a spacecraft through.

Read more

Electronic computers are extremely powerful at performing a high number of operations at very high speeds, sequentially. However, they struggle with combinatorial tasks that can be solved faster if many operations are performed in parallel.


The EU Horizon 2020 has launched Bio4Comp, a five-year €6.1M project to build more powerful and safer biocomputers that could outperform quantum computing.

The Bio4Comp project has the ambitious goal of building a computer with greater processing speed and lower energy consumption than any of the most advanced computers existing today. Ultimately, this could translate into enabling large, error-free security software to be fast enough for practical use, potentially wiping out all current security concerns.

A total of €6.1M have been awarded to an European team of researchers from TU Dresden, Fraunhofer-Gesellschaft, Lund University, Linnaeus University and Bar Ilan University, as well as the British company Molecular Sense.

Read more

Of all the laws of physics, this is arguably one of the strangest — scientists have discovered that the forces controlling the behaviour of a black hole’s event horizon are also at play in superfluid helium, an extraordinary liquid that flows without friction.

This entanglement area law has now been observed at both the vast scale of black holes and the atomic scale of cold helium, and could be the key to finally establishing the long sought-after quantum theory of gravity — the solution to one of the deepest problems in theoretical physics today.

The fact that an entanglement area law can apply to both black holes and helium “is weird,” says one of the team, physicist Adrian Del Maestro from the University of Vermont, “and it points to a deeper understanding of reality.”

Read more

Support me on Patreon: http://www.patreon.com/minutephysics

Previous video on No Cloning: https://youtu.be/owPC60Ue0BE

How to teleport Schrödinger’s cat: this video presents the full quantum teleportation procedure, in which an arbitrary qubit (spin, etc) is teleported from Alice to Bob by way of a pair of particles entangled in a bell (EPR) state and the transmission of information via a classical channel.

Read more

A central goal that modern physicists share is finding a single theory that can explain the entire Universe and unite the forces of nature.

The standard model, for example, leaves dark matter, dark energy, and even gravity out of the picture — meaning that it really only accounts for a very small percentage of what makes up the Universe.

String theory stitches Einstein’s conception of the general theory of relativity together with quantum, echanics, and the result is quantum theory applied to gravity.

Read more