Toggle light / dark theme

Rose’s Law for Quantum Computing highlights the new platforms sheer power to solve humanity’s and society’s most complex problems on, and off, Earth

When Steve Jurvetson, Managing Director of the investment firm Draper Fisher Jurvetson (DJF) first met Geordie Rose, now CTO and former CEO of D-Wave back in 2002 he was struck by his ability to explain complex quantum physics and the “spooky” underpinnings of a new class of computing platform – Quantum Computing.

DFJ first invested in D-Wave in 2003, and Rose predicted that he would be able to demonstrate a two-bit quantum computer within 6 months – years, if not decades ahead of the competition and there was a certain precision to his predictions. With one bit under his belt, and a second coming, Rose went on to suggest that the number of qubits in a scalable quantum computing architecture should double every year. Sound familiar?

Read more

Another approach to QC; the title of the article is misleading because you still are using quantum properties in the approach.


Researchers at Aalto University have demonstrated the suitability of microwave signals in the coding of information for quantum computing. Previous development of the field has been focusing on optical systems. Researchers used a microwave resonator based on extremely sensitive measurement devices known as superconductive quantum interference devices (SQUIDs). In their studies, the resonator was cooled down and kept near absolute zero, where any thermal motion freezes. This state corresponds to perfect darkness where no photon — a real particle of electromagnetic radiation such as visible light or microwaves — is present.

However, in this state (called quantum vacuum) there exist fluctuations that bring photons in and out of existence for a very short time. The researchers have now managed to convert these fluctuations into real photons of microwave radiation with different frequencies, showing that, in a sense, darkness is more than just absence of light.

They also found out that these photons are correlated with each other, as if a magic connection exists between them.

Making a more ultrafast optical switch and can be used to control or address individual spin states, which is needed for spin-based quantum computing.


August 31, 2016.

NREL scientists Ye Yang and Matt Beard stand in front of a transient absorption spectrometer in their laser lab.

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) discovered a use for perovskites that runs counter to the intended usage of the hybrid organic-inorganic material.

Read more

I will have to admit Australia is pretty advance in its research and development efforts in QC. With Michelle Simmons and team they certainly give folks a run for their money in the QC race.


MIS Asia offers Information Technology strategy insight for senior IT management — resources to understand and leverage information technology from a business leadership perspective.

Read more

The Wall Street Journal on Aug. 16 reported that China sent the world’s first quantum communications satellite into orbit. The newspaper also stated that China spent $101 billion in 2015 on quantum research and technology development. The satellite has the ability to greatly expand China’s ability to expand their unhackable communications.

Now we in the U.S. read almost daily about some U.S. computer system that has been hacked. Our current technology cannot be considered secure. So what is our government investing in?

According to the GAO, the U.S. spent over $10 billion on global climate change science and technology in 2014. Gave $400 million to Iran for who knows what, and spent about $200 million on quantum technology.

Read more