Toggle light / dark theme

Physicists’ finding could revolutionize information transmission

Move aside, electrons; it’s time to make way for the trion.

A research team led by physicists at the University of California, Riverside, has observed, characterized, and controlled dark trions in a semiconductor—ultraclean single-layer tungsten diselenide (WSe2)—a feat that could increase the capacity and alter the form of transmission.

In a semiconductor, such as WSe2, a trion is a quantum bound state of three charged particles. A negative trion contains two electrons and one hole; a positive trion contains two holes and one electron. A hole is the vacancy of an electron in a semiconductor, which behaves like a positively charged particle. Because a trion contains three interacting particles, it can carry much more information than a .

Solving problems on a quantum chessboard

Physicists at the University of Innsbruck are proposing a new model that could demonstrate the supremacy of quantum computers over classical supercomputers in solving optimization problems. In a recent paper, they demonstrate that just a few quantum particles would be sufficient to solve the mathematically difficult N-queens problem in chess even for large chess boards.

Characterizing the ‘arrow of time’ in open quantum systems

Even in the strange world of open quantum systems, the arrow of time points steadily forward—most of the time. New experiments conducted at Washington University in St. Louis compare the forward and reverse trajectories of superconducting circuits called qubits, and find that they follow the second law of thermodynamics. The research is published July 9 in the journal Physical Review Letters.

“When you look at a quantum system, the act of measuring usually changes the way it behaves,” said Kater Murch, associate professor of physics in Arts & Sciences. “Imagine shining light on a small particle. The photons end up pushing it around and there is a dynamic associated with the measurement process alone.

”We wanted to find out if these dynamics have anything to do with the arrow of time—the fact that entropy tends to increase as time goes on.”

Researchers discover semiconducting nanotubes that form spontaneously

If scientists could find a way to control the process for making semiconductor components on a nanometric scale, they could give those components unique electronic and optical properties—opening the door to a host of useful applications.

Researchers at the Laboratory of Microsystems, in EPFL’s School of Engineering, have taken an important step towards that goal with their discovery of semiconducting nanotubes that assemble automatically in solutions of metallic nanocrystals and certain ligands. The tubes have between three and six walls that are perfectly uniform and just a few atoms thick—making them the first such nanostructures of their kind.

What’s more, the nanotubes possess photoluminescent properties: they can absorb light of a specific wavelength and then send out intense light waves of a different color, much like and quantum wells. That means they can be used as in , for example, or as catalysts in photoreduction reactions, as evidenced by the removal of the colors of some organic dyes, based on the results of initial experiments. The researchers’ findings have made the cover of ACS Central Science.

Honeywell Trapped Ion Quantum Computer

Honeywell Quantum Solutions has demonstrated record-breaking high fidelity quantum operations on their trapped-ion qubits. It is a major step towards producing the world’s most powerful quantum computer. Honeywell targets an operational trapped ion quantum computer by the end of 2019.

Currently the leading trapped ion quantum computer is by the startup IonQ. There are commercial quantum annealing systems from D-Wave Systems with 2000 qubits. There are superconducting quantum computers with 16–72 qubits from Google, IBM, Intel and Rigetti Systems.

Quantum Particles Found Exhibiting Immortality Through “Infinite Decay And Rebirth”

We know that the rule “nothing lasts forever” holds true for everything. But the world of quantum particles doesn’t always seem to follow the rules.

In the latest findings, scientists have observed that quasiparticles in quantum systems could be virtually immortal. These particles can regenerate themselves after they have decayed — and this can have a significant impact on the future of quantum computing and humanity itself.

This finding stands up directly against the second law of thermodynamics which basically says that things can only break down and not reconstruct again. However, these quantum particle fields can reconstruct themselves after decaying – just like the Phoenix rises from its ashes in Greek mythology.

If You Thought Quantum Mechanics Was Weird, You Need to Check Out Entangled Time

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics.

The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly.

AI can simulate quantum systems without massive computing power

It’s difficult to simulate quantum physics, as the computing demand grows exponentially the more complex the quantum system gets — even a supercomputer might not be enough. AI might come to the rescue, though. Researchers have developed a computational method that uses neural networks to simulate quantum systems of “considerable” size, no matter what the geometry. To put it relatively simply, the team combines familiar methods of studying quantum systems (such as Monte Carlo random sampling) with a neural network that can simultaneously represent many quantum states.