Menu

Blog

Archive for the ‘quantum physics’ category: Page 774

Aug 27, 2016

Quantum correlations do not imply instant causation

Posted by in category: quantum physics

A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought.

In 2015 the universe was officially proven to be weird. After many decades of research, a series of experiments showed that distant, entangled objects can seemingly interact with each other through what Albert Einstein famously dismissed as “Spooky action at a distance”.

A new experiment by an international team led by Heriot-Watt’s Dr Alessandro Fedrizzi has now found that the universe is even weirder than that: entangled objects do not cause each other to behave the way they do.

Read more

Aug 27, 2016

How quantum computers will change the world of hacking

Posted by in categories: cybercrime/malcode, encryption, information science, quantum physics

There is a computing revolution coming, although nobody knows exactly when. What are known as “quantum computers” will be substantially more powerful than the devices we use today, capable of performing many types of computation that are impossible on modern machines.

But while faster computers are usually welcome, there are some computing operations that we currently rely on being hard (or slow) to perform.

Specifically, we rely on the fact that there are some codes that computers can’t break – or at least it would take them too long to break to be practical. Encryption algorithms scramble data into a form that renders it unintelligible to anyone that does not possess the necessary decryption key (normally a long string of random numbers).

Continue reading “How quantum computers will change the world of hacking” »

Aug 27, 2016

Is Anything Truly Random or Is There an Underlying Order to Everything?

Posted by in categories: ethics, quantum physics

A discussion that I have had often.


In Beyond Science, Epoch Times explores research and accounts related to phenomena and theories that challenge our current knowledge. We delve into ideas that stimulate the imagination and open up new possibilities. Share your thoughts with us on these sometimes controversial topics in the comments section below.

The Dutch philosopher Baruch Spinoza (1632–1677) wrote in “Ethics I”: “Nothing in Nature is random. … A thing appears random only through the incompleteness of our knowledge.”

Continue reading “Is Anything Truly Random or Is There an Underlying Order to Everything?” »

Aug 26, 2016

World’s Scientists: “Human Consciousness Will Remain a Mystery”

Posted by in categories: bioengineering, computing, mathematics, neuroscience, quantum physics

More insights on human conscientious in relation to its state after we die.

Personally, (this is only my own opinion) I believe much of the human conscientious will remain a mystery even in the living as it relates to the re-creation of the human brain and its thinking and decision making patterns on current technology. Namely because any doctor will tell you that a person’s own decisions (namely emotional decision making/ thinking) can be impacted by a whole multitude of factors beyond logical information such as the brain’s chemical balance, physical illness or even injury, etc. which inherently feeds into conscientious state. In order to try to replicate this model means predominantly development of a machine that is predominantly built with synthetic biology; and even then we will need to evolve this model to finally understand human conscientious more than we do today.

Continue reading “World’s Scientists: ‘Human Consciousness Will Remain a Mystery’” »

Aug 26, 2016

Beyond silicon: We discover the processors of your future tech

Posted by in categories: bioengineering, biological, computing, quantum physics

New updated article on the evolution of the processors of tomorrow.

Personally, I find this article runs short in only focusing on carbon, organics aka plastics, and QC as future replacement. With the ongoing emergence of synthetic biology and what this could mean for processors; I would suggest the author explore further the future of synthetic bio.


From stacked CPUs to organic and quantum processing.

Continue reading “Beyond silicon: We discover the processors of your future tech” »

Aug 26, 2016

Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules

Posted by in categories: computing, particle physics, quantum physics

Perfecting the macro-molecule.


(Phys.org)—A pair of physicists with the Swiss Federal Institute of Technology in Switzerland has found a way to create very large diatomic molecules, and in so doing, have proved some of the theories about such molecules to be correct. In their paper published in Physical Review Letters, Johannes Deiglmayr and Heiner Saßmannshausen describe their experiments and results and why they believe such molecules may have a future in quantum computing.

Physicists have been interested in the properties of macromolecules for many years because they believe studying them will illuminate the fundamental properties of in general. Prior research has shown that large, two-atom molecules should be possible if they were put into a Rydberg state—in which the outer electron exists in a high quantum state, allowing it to orbit farther than normal from the nucleus—and thus allowing for the creation of molecules thousands of times larger than conventional diatomic molecules such as H2.

Continue reading “Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules” »

Aug 25, 2016

Financial Networking Company Prepares for?Post-Quantum World

Posted by in categories: cybercrime/malcode, encryption, finance, privacy, quantum physics

Interesting read on IPC Systems Inc. is partnering with U.K. startup Post-Quantum to (in their own words) “offer its clients encryption, biometric authentication and a distributed-ledger record-keeping system that the software company says is designed to resist hacking — even by a quantum computer.” — I will be researching this more.


(Bloomberg) — When it comes to cybersecurity, no one can accuse IPC Systems Inc., the New Jersey-based company that builds communications networks for trading firms and financial markets, of preparing to fight the last war.

Read more

Aug 25, 2016

CERN & D-Wave’s Quantum Key To The Abyss & Beyond

Posted by in categories: computing, quantum physics

https://youtube.com/watch?v=hRV9_oNDxu0

Interesting recorded show on how each person has been assigned a unique node which can replicate the person digitally in a virtual world. And, how DoD and D-Wave is involved. Not sure how factual this is; but an interesting concept.


Anthony Patch, author researcher & public speacker, is back on The Kev Baker Show. This time out we discuss how CERN & quantum computers literally hold the key to unlocking a multidimensional reality.

Continue reading “CERN & D-Wave’s Quantum Key To The Abyss & Beyond” »

Aug 25, 2016

New Condensed Matter State Paves the Way for Scalable Quantum Computers

Posted by in categories: computing, particle physics, quantum physics

Rice physicists are closing in on a method that will create a new condensed matter state in which all electrons in a material act as one by manipulating them with light and a magnetic field. This research advance technologies such as quantum computers.

For particle physicists, studying the interactions between photons and electrons has long been an area of interest. After all, observing such phenomena could eventually lead us to the creation of a viable quantum computer.

Physicist Junichiro Kono and his colleagues at Rice University are making headway on a method to create a new condensed matter state, where electrons in a material “couple” after they are manipulated with light and a magnetic field.

Continue reading “New Condensed Matter State Paves the Way for Scalable Quantum Computers” »

Aug 25, 2016

Building devices from colloidal quantum dots

Posted by in categories: materials, quantum physics

Meet the punk rock version of Device making via Q-Dots.


A wide range of materials can now be synthesized into semiconducting quantum dots. Because these materials grow from solutions, there is scope to combine quantum dots into devices by using simple, low-cost manufacturing processes. Kagan et al. review recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices. Because it is possible to tune the size, shape, and connectivity of each of the quantum dots, there is potential for fabricating electronic materials with properties that are not available in traditional bulk semiconductors.

Science, this issue p. [885][1]

Continue reading “Building devices from colloidal quantum dots” »