Toggle light / dark theme

We all know that physics and maths can be pretty weird, but these three books tackle their mind-bending subjects in markedly contrasting ways. Clifford V. Johnson’s The Dialogues is a graphic novel, seeking to visualise cosmic ideas in comic-book style. Darling and Banerjee’s Weird Maths is a miscellany of fun oddities, ranging from chess-playing computers to prime-counting insects. Philip Ball’s Beyond Weird argues that we’ve got quantum mechanics all wrong: it’s not so weird actually, but quite sensible. All three books do a fine job for their respective audiences. Just make sure you know which target group you’re in.

The Dialogues is a sequence of illustrated conversations, often between pairs of youthful and attractive characters, scrupulously diverse in race and gender, who happen to meet in a café, gallery or train carriage, and find themselves talking about physics. Perhaps ‘The Lectures’ would be a better title, since one interlocutor is the expert, while the other is an interested lay person whose role is to feed questions at appropriate intervals.

The author shows himself to be a highly talented graphic artist as well as being a distinguished theoretician, and while the ping-pong chats may be somewhat lacking in narrative drive, they do provide a platform for some admirably lucid explanations of topics such as Maxwell’s equations or Einstein’s cosmological constant. Not the kind of comic book you roll up in your pocket, but a weighty hardback that would grace any coffee table.

Read more

You probably scratched your head last year if you read about time crystals, likely 2017’s most esoteric, widely covered popular science story. Even if you understood how they worked, you might not have known what use they could have. Time crystals, systems of atoms that maintain a periodic ticking behavior in the presence of an added electromagnetic pulse, have now piqued the interest of one well-funded government agency: the Department of Defense.

The DoD’s Defense Advanced Research Projects Agency, or DARPA, announced a new program to fund research on these systems. More generally, the new DRINQS program will study exactly what its acronym stands for: “Driven and Nonequilibrium Quantum Systems.” But why?

“The applications could be for atomic clocks, where you have an ensemble of atoms you’re vibrating to extract time information,” Ale Lukaszew, program manager in DARPA’s defense sciences offices, told Gizmodo. “There might be applications related to measuring things with exquisite sensitivity in time and magnetic field domains. Not a lot of these applications are open for discussion.” In other words, time crystal-based military technology is classified.

Read more

This major religious site suggests I’m part of a group of mad scientists, but Quantum Archaeology is a very interesting idea that more people should ponder. The article also highlights the challenge of #transhumanism vs. religion and conservative attitutes: http://www.lifenews.com/2018/03/12/mad-scientists-want-to-3-…k-to-life/ #transhumanism


But the self-described secular transhumanist is perfectly serious in his posturing about the future of technology, life and death. Within 50 years, he believes scientists may be able to bring back people from the dead.

“After all, everything is matter and energy. And human life, human thoughts and human existence are mathematical, determinable calculations of that subatomic world of matter and energy,” Istvan writes.

“As a secular transhumanist—someone who advocates for improving humanity by merging people with machines—I don’t believe in death anymore,” he continues. “Most transhumanists’ number one goal is to become immortal through science.”

Though he does not lump himself into this camp, he says some transhumanists want to bring back every life who ever lived.

Read more

Our current understanding of gravity is based on Albert Einstein’s general theory of relativity—a dated concept belonging to the realm of classical physics.

Modern scientists, however, are still struggling to quantize gravity—that is, describe it according to the principles of quantum mechanics.

This 83-year search is believed by many to be the deepest question in physics.

Read more

The move is being heralded as a ‘significant milestone’ in the broader effort to build a world-beating quantum computer.

Building a quantum computer has been called the ‘space race of the 21st century’ – a difficult and ambitious challenge, with the potential to deliver revolutionary tools.

The team of researchers, which is led by Australian of the year Michelle Simmons, is the only group in the world that can see the exact position of their qubits, according to a release from the University of New South Wales.

Read more