Menu

Blog

Archive for the ‘quantum physics’ category: Page 552

Jun 21, 2019

Researchers demonstrate new path to reliable quantum computation

Posted by in categories: computing, information science, quantum physics

Researchers at the University of Chicago published a novel technique for improving the reliability of quantum computers by accessing higher energy levels than traditionally considered. Most prior work in quantum computation deals with “qubits,” the quantum analogue of binary bits that encode either zero or one. The new work instead leverages “qutrits,” quantum analogues of three-level trits capable of representing zero, one or two.

The UChicago group worked alongside researchers based at Duke University. Both groups are part of the EPiQC (Enabling Practical-scale Quantum Computation) collaboration, an NSF Expedition in Computing. EPiQC’s interdisciplinary research spans from algorithm and software development to architecture and design, with the ultimate goal of more quickly realizing the enormous potential of computing for scientific discovery and computing innovation.

Jun 20, 2019

Quantum Computing for English Majors

Posted by in categories: computing, information science, quantum physics

Poet who discovered Shor’s algorithm answers questions about quantum computers and other mysteries.

Jun 20, 2019

Researchers find quantum gravity has no symmetry

Posted by in categories: quantum physics, space

June 19, 2019 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)

Jun 20, 2019

Machine learning unlocks mysteries of quantum physics

Posted by in categories: quantum physics, robotics/AI

Understanding electrons’ intricate behavior has led to discoveries that transformed society, such as the revolution in computing made possible by the invention of the transistor.

Jun 20, 2019

Cisco Live 2019: Quantum Computing Presents an Exciting (and Scary) Future for IT

Posted by in categories: computing, quantum physics, security

The future is quantum, and while it’s absolutely full of possibilities, the increased power and scale of quantum computing presents some serious security concerns.

Jun 19, 2019

Submission to the Immortality Project conducted by University of California, Riverside – Dr Janni Lloyd

Posted by in categories: biotech/medical, life extension, quantum physics

I’m Dr Janni Lloyd. My interest in health formally began in 1973 when I commenced my medical degree at the University of Western Australia. I spent many years in General Practice with a special interest in the psychological and emotional aspects of health maintenance and disease creation. In 1994 I moved into Holistic / Alternative / Complementary health. In 1992 I began studying Healthy Longevity / Indefinite Life Extension and the philosophy of Physical Immortality from many different perspectives – spirituality/theology, holistic health, psychology, medical science and quantum physics.

The following essay/article combines many of these different viewpoints.

HEALTHY LIFE EXTENSION / PHYSICAL IMMORTALITY – THE MASS POSSIBILITY

Jun 19, 2019

The Quantum Internet Is Emerging, One Experiment at a Time

Posted by in categories: drones, internet, quantum physics

Breakthrough demonstrations using defective diamonds, high-flying drones, laser-bathed crystals and other exotica suggest practical, unhackable quantum networks are within reach.

  • By Anil Ananthaswamy on June 19, 2019

Jun 18, 2019

Study sheds light on gauge invariance in ultrastrong-coupling cavity quantum electrodynamics

Posted by in categories: mathematics, quantum physics

In quantum electrodynamics, the choice of gauge (i.e. specific mathematical formalism used to regulate degrees of freedom) can greatly influence the form of light-matter interactions. Interestingly, however, the “gauge invariance” principle implies that all physical results should be independent from a researcher’s choice of gauge. The quantum Rabi model, which is often used to describe light-matter interactions in cavity-QED, has been found to violate this principle in the presence of ultrastrong light-matter coupling, and past studies have attributed this failure to the finite-level truncation of the matter system.

A team of researchers at RIKEN (Japan), Università di Messina (Italy) and the University of Michigan (U.S.) have recently carried out a study investigating this topic further. In their paper, published in Nature Physics, they identified the source of this gauge violation and provided a method to derive light-matter Hamiltonians in truncated Hilbert spaces, which can produce gauge-invariant physical results even in extreme light-matter interaction regimes.

“Ultrastrong coupling between light and matter has, in the past decade, transitioned from a theoretical idea to an experimental reality,” Salvatore Savasta, one of the researchers who carried out the study, told Phys.org. “It is a new regime of light-matter interaction, which goes beyond weak and strong coupling to make the coupling strength comparable to the transition frequencies in the system. These regimes, besides enabling intriguing new physical effects, as well as many , represents an opportunity to deepen our understanding subtle aspects of the interaction of light and matter.”

Jun 18, 2019

‘Double-slit’ quantum experiment shows strangeness of quantum uncertainty

Posted by in categories: particle physics, quantum physics

This theory combines wave and particle aspects in quantum mechanics be postulating that the motion of a particle is choreographed by the wave function.

By reconstructing the Bohmian trajectories of single photons, the team experimentally obtained the distribution of velocity change.

“In the experiment, the velocity disturbance happens gradually, up to five metres away from where the which-slit measurement was performed,” Prof Wiseman said.

Jun 17, 2019

New quantum dot microscope shows electric potentials of individual atoms

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

A team of researchers from Jülich in cooperation with the University of Magdeburg has developed a new method to measure the electric potentials of a sample at atomic accuracy. Using conventional methods, it was virtually impossible until now to quantitatively record the electric potentials that occur in the immediate vicinity of individual molecules or atoms. The new scanning quantum dot microscopy method, which was recently presented in the journal Nature Materials by scientists from Forschungszentrum Jülich together with partners from two other institutions, could open up new opportunities for chip manufacture or the characterization of biomolecules such as DNA.

The positive atomic nuclei and negative electrons of which all matter consists produce electric potential fields that superpose and compensate each other, even over very short distances. Conventional methods do not permit quantitative measurements of these small-area fields, which are responsible for many material properties and functions on the nanoscale. Almost all established methods capable of imaging such potentials are based on the measurement of forces that are caused by electric charges. Yet these forces are difficult to distinguish from other forces that occur on the nanoscale, which prevents quantitative measurements.

Four years ago, however, scientists from Forschungszentrum Jülich discovered a method based on a completely different principle. Scanning quantum dot microscopy involves attaching a single organic molecule—the quantum dot—to the tip of an atomic microscope. This molecule then serves as a probe. “The molecule is so small that we can attach individual electrons from the tip of the atomic force microscope to the molecule in a controlled manner,” explains Dr. Christian Wagner, head of the Controlled Mechanical Manipulation of Molecules group at Jülich’s Peter Grünberg Institute (PGI-3).