Toggle light / dark theme

Why black holes unlock the quantum majesty of the Universe

The story of modern physics has been one of reductionism. We do not need a vast encyclopedia to understand the inner workings of Nature. Rather, we can describe a near-limitless range of natural phenomena, from the interior of a proton to the creation of galaxies, with apparently unreasonable efficiency using the language of mathematics. In the words of theoretical physicist Eugene Wigner, ‘The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it.’

The mathematics of the twentieth century described a Universe populated by a limited number of different types of fundamental particles interacting with each other in an arena known as spacetime according to a collection of rules that can be written down on the back of an envelope. If the Universe was designed, it seemed, the designer was a mathematician.

Today, the study of black holes appears to be edging us in a new direction, towards a language more often used by quantum computer scientists. The language of information. Space and time may be emergent entities that do not exist in the deepest description of Nature. Instead, they are synthesized out of entangled quantum bits of information in a way that resembles a cleverly constructed computer code. If the Universe is designed, it seems, the designer is a programmer.

Quantum Computing Stocks Offer Life-Changing Wealth Potential for Long-Term Investors

Editor’s note: “Quantum Computing Stocks Offer Life-Changing Wealth Potential for Long-Term Investors” was previously published in January 2023. It has since been updated to include the most relevant information available.

As a long-term investor during periods of market volatility like we’re seeing today, there’s one thing I always do.

Scientists build ‘baby’ wormhole as sci-fi moves closer to fact

Year 2022 😗


WASHINGTON, Nov 30 (Reuters) — In science fiction — think films and TV like “Interstellar” and “Star Trek” — wormholes in the cosmos serve as portals through space and time for spacecraft to traverse unimaginable distances with ease. If only it were that simple.

Scientists have long pursued a deeper understanding of wormholes and now appear to be making progress. Researchers announced on Wednesday that they forged two miniscule simulated black holes — those extraordinarily dense celestial objects with gravity so powerful that not even light can escape — in a quantum computer and transmitted a message between them through what amounted to a tunnel in space-time.

It was a “baby wormhole,” according to Caltech physicist Maria Spiropulu, a co-author of the research published in the journal Nature. But scientists are a long way from being able to send people or other living beings through such a portal, she said.

Scientists figured out how to manipulate ‘quantum light’ for the first time in history

Manipulating anything in the world of quantum physics is tricky, but now, scientists have managed to manipulate quantum light particles that have a strong relationship with each other. The breakthrough sounds a bit obscure, especially if you aren’t studying quantum mechanics yourself, but it’s a huge success that will be fundamental in how scientists study the quantum realm from here forward.

Do We Live In a Simulation? Experiment To Prove/Disprove It

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about an experiment that may be able to show whether we live in a simulation.
Links:
https://cqi.inf.usi.ch/qic/wheeler.pdf.
https://en.wikipedia.org/wiki/Simulation_hypothesis.
https://en.wikipedia.org/wiki/Zhuangzi_(book)
https://theconversation.com/how-to-test-if-were-living-in-a-…ion-194929
https://aip.scitation.org/doi/10.1063/5.0087175
Great explanation of double slit experiment: https://www.youtube.com/watch?v=A9tKncAdlHQro.
#simulationhypothesis #quantumphysics #physics.

0:00 Do we live in a simulation?
0:50 History of this question, Chinese, Greek and others.
1:50 Modern take.
3:20 Can it be proven experimentally?
3:50 Not holographic principle!
4:20 Potential proof of simulation ideas.
6:10 Quantum physics proofs, double slit experiments.
7:30 Experimental setup to test this.
10:00 Conclusions and more ideas.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

Quantum aspects of the brain-mind relationship: A hypothesis with supporting evidence

Abstract.

If all aspects of the mind-brain relationship were adequately explained by classical physics, then there would be no need to propose alternatives. But faced with possibly unresolvable puzzles like qualia and free will, other approaches are required. In alignment with a suggestion by Heisenberg in 1958, we propose a model whereby the world consists of two elements: Ontologically real Possibles that do not obey Aristotle’s law of the excluded middle, and ontologically real Actuals that do. Based on this view, which bears resemblance to von Neumann’s 1955 proposal (von Neumann, 1955), and more recently by Stapp and others (Stapp, 2007; Rosenblum and Kuttner, 2006), measurement that is registered by an observer’s mind converts Possibles into Actuals. This quantum-oriented approach raises the intriguing prospect that some aspects of mind may be quantum, and that mind may play an active role in the physical world. A body of empirical evidence supports these possibilities, strengthening our proposal that the mind-brain relationship may be partially quantum.

What would we expect with a Partially Quantum Mind-Body System?

One of the largest mysteries of science is that humans have conscious awareness of their complex subjective experiences – or what we call “qualia” – such as being aware of what it’s like to delight in the color of a flower, melt into the comfort of a bed, or to feel sharp pain. Why and how qualia could emerge from physical matter and be a part of the human experience is unknown, and this is called the ‘hard problem’ of consciousness. Related to qualia is the mystery of why humans feel like they have free will, or the ability to intentionally choose and execute actions.

The ‘easy’ problem of consciousness is mapping these mind states to brain states, such as identifying which brain regions are active during a certain experience, such as smelling a flower. Despite advances in classical physics and neuroscience, many aspects of the mind-brain relationship, such as qualia, remain unresolved. New theories of mind are required to address this perennial mystery.

In a new paper, we propose that some aspects of mind are quantum and can play an active role in the physical world, explaining some of the unexplainable.

/* */