Toggle light / dark theme

A team from the University of Chicago has announced the first evidence for “quantum superchemistry” – a phenomenon where particles in the same quantum state undergo collective accelerated reactions. The effect had been predicted, but never observed in the laboratory.

The findings, published July 24 in Nature Physics, open the door to a new field. Scientists are intensely interested in what are known as “quantum-enhanced” chemical reactions, which could have applications in quantum chemistry, quantum computing, and other technologies, as well as in better understanding the laws of the universe.


Breakthrough could point way to fundamental insights, new technology.

In a paper recently published in Nature Photonics.

<em>Nature Photonics</em> is a prestigious, peer-reviewed scientific journal that is published by the Nature Publishing Group. Launched in January 2007, the journal focuses on the field of photonics, which includes research into the science and technology of light generation, manipulation, and detection. Its content ranges from fundamental research to applied science, covering topics such as lasers, optical devices, photonics materials, and photonics for energy. In addition to research papers, <em>Nature Photonics</em> also publishes reviews, news, and commentary on significant developments in the photonics field. It is a highly respected publication and is widely read by researchers, academics, and professionals in the photonics and related fields.

A new study discusses how high-fidelity quantum information could be sent through fiber optic networks by a novel atomic device.

Did you know quantum transmissions can’t be amplified over a city or an ocean like conventional data signals? Instead, they have to be periodically repeated using specialized devices called quantum repeaters.

For the technology to be used in future communications networks, researchers have developed a novel method of connecting quantum devices over great distances.

Michael Levin discusses his 2022 paper “Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds” and his 2023 paper with Joshua Bongard, “There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-scale Machines.” Links to papers flagged 🚩below.

Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

❶ Polycomputing (observer-dependent)
1:59 Outlining the discussion.
3:50 My favorite comment from round 1 interview.
5:00 What is polycomputing?
8:50 An ode to Richard Feynman’s “There’s plenty of room at the bottom“
11:10 How/when was this discovered? Reductionism, causal power…
14:40 “It’s a view that steps away from prediction.“
16:20 From abstract: Polycomputing is the ability of the same substrate to simultaneously compute different things *but emphasis on the observer(s)*
17:05 What’s an example of polycomputing?
19:40 They took a different approach and actually did experiments with gene regulatory networks (GRNs)
23:18 Different observers extract different utility from the exact same system.
26:35 Spatial causal emergence graphs (determinism, degeneracy) | Erik Hoel’s micro/macro & effective information.
29:25 Inventiveness of John Conway’s Game of Life.

❷ Technological Approach to Mind Everywhere.
34:20 Tell me 3 things to determine intelligence (ball vs mouse on a hill)
39:50 Jeff Hawkins’ Thousand Brains Theory.
41:05 Agency is not binary, continuum of persuadability.
44:50 Where’s the bottom of agency? Plants & insects far off from 0
46:55 What is the absolute minimum amount of agency? Some degree of goal directed behavior & indeterminacy…
51:05 Life is a system good at scaling.
51:41 “To me, our world doesn’t have 0 agency anywhere.“
53:50 As an engineer, what can I take advantage of?
55:00 Surely you don’t think the weather has any intelligence to it…

❸ Attractor Landscapes.
58:35 Homeostatic loops, morphological spaces, attractor landscapes.
1:00:35 “Of course we’re living in a simulation!“
1:06:45 Attractor landscapes, topography, anatomical morphous space (D’Arcy Thompson)
1:12:28 Planaria stochastic, probability of head shape proportional to evolutionary distance between species.
1:15:15 What is the secret of the universe? Attractor landscapes, quantum fields, black holes.
1:19:05 We need a new system of ethics for unconventional minds.

🚾 Works Cited.

Isaac Newton described his theory of gravity as a force that acts instantaneously across space: a planet immediately senses the effects of another astronomical object, regardless of the separation between them. This aspect inspired Einstein to create the renowned theory of general relativity, where gravity becomes a local deformation of spacetime.

The principle of locality states that an object is directly influenced only by its surrounding environment: distant objects cannot communicate instantaneously, only what is here right now matters. However, in the past century, with the birth and development of quantum mechanics, physicists discovered that non-local phenomena not only exist but are fundamental to understanding the nature of reality.

Now, a new study from SISSA – Scuola Internazionale Superiore di Studi Avanzati, recently published in The Astrophysical Journal.

Crafting organic molecules into a bizarre kind of magnet, physicists from Aalto University and the University of Jyväskylä in Finland have created the perfect space for observing the elusive activity of an electronic state called a triplon.

Where a garden variety magnet is typically best described as having two poles surrounded by a nest of field lines, the curious construct known as a quantum magnet defies such a simple description.

As is the case any time the word ‘quantum’ appears, you can imagine a landscape where nothing is certain. Like spinning roulette wheels in a dimly lit casino, all states are a maybe until the croupier says “no more bets”.

To discover how light interacts with molecules, the first step is to follow electron dynamics, which evolve at the attosecond timescale. The dynamics of this first step have been called charge migration (CM). CM plays a fundamental role in chemical reactions and biological functions associated with light–matter interaction. For years, visualizing CM at the natural timescale of electrons has been a formidable challenge in ultrafast science due to the ultrafine spatial (angstrom) and ultrafast temporal (attosecond) resolution required.

Experimentally, the sensitive dependence of CM on and orientations has made the CM dynamics complex and difficult to trace. There are still some open questions about molecular CM that remain unclear. One of the most fundamental questions: how fast does the charge migrate in molecules? Although molecular CM has been extensively studied theoretically in the last decade by using time-dependent quantum chemistry packages, a real measurement of the CM has remained unattainable, due to the extreme challenge.

As reported in Advanced Photonics, a research team from Huazhong University of Science and Technology (HUST), in cooperation with theoretical teams from Kansas State University and University of Connecticut, recently proposed a high harmonic spectroscopy (HHS) method for measuring the CM speed in a carbon-chain molecule, butadiyne (C4H2).

More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about bizarre quantum effects discovered in the last few months.
Links:
https://news.uchicago.edu/story/uchicago-scientists-observe-…laboratory.
https://www.nature.com/articles/s41567-023-02139-8
https://www.nature.com/articles/s41586-023-05727-z.
https://www.nature.com/articles/s42005-022-00881-8
#quantum #quantumphysics #quantummechanics.

0:00 Evidence for quantum superchemistry.
3:40 Solar fusion is quantum and not classical.
5:20 Quantum tunneling and microscopy.
7:00 Tunneling causes chemistry.
7:40 Tunneling affects DNA and causes mutation.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.
Enjoy and please subscribe.

Subscribe here: https://goo.gl/9FS8uF
Check out the previous episode: https://www.youtube.com/watch?v=X5lpOskKF9I
Become a Patreon!: https://www.patreon.com/ColdFusion_TV

Here it is, the bio computer. A new type of parallel computing method that could rival the infamous quantum computer at a much lower price while being more practical to boot.

Hi, welcome to ColdFusion (formally known as ColdfusTion).
Experience the cutting edge of the world around us in a fun relaxed atmosphere.

Sources:

http://www.mind.ilstu.edu/curriculum/nature_of_computers/computer_types.php.

http://www.lunduniversity.lu.se/