Toggle light / dark theme

Mapping the geometry of quantum worlds: measuring the quantum geometric tensor in solids.

Quantum states are like complex shapes in a hidden world, and understanding their geometry is key to unlocking the mysteries of modern physics. One of the most important tools for studying this geometry is the quantum geometric tensor (QGT). This mathematical object reveals how quantum states “curve” and interact, shaping phenomena ranging from exotic materials to groundbreaking technologies.

The QGT has two parts, each with distinct significance:

1. The Berry curvature (the imaginary part): This governs topological phenomena, such as unusual electrical and magnetic behaviors in advanced materials.

2. The quantum metric (the real part): Recently gaining attention, this influences surprising effects like flat-band superfluidity, quantum Landau levels, and even the nonlinear Hall effect.

While the QGT is crucial for understanding these phenomena, measuring it directly has been a challenge, previously limited to simple, artificial systems.

A breakthrough now allows scientists to measure the QGT in real crystalline solids. Using an advanced technique involving polarization-, spin-, and angle-resolved photoemission spectroscopy, researchers have reconstructed the QGT in a material called CoSn, a “kagome metal” with unique quantum properties like topological flat bands. This metal forms patterns resembling a woven basket, hosting quantum effects that were previously only theorized.

Leveraging the principles of quantum mechanics, quantum computers can perform calculations at lightning-fast speeds, enabling them to solve complex problems faster than conventional computers. In quantum technology applications such as quantum computing, light plays a central role in encoding and transmitting information.

NTU researchers have recently made breakthroughs in manipulating light that could potentially usher in the era of . Details of this research have been published in Nature Photonics, Physical Review Letters, and Nature Communications.

Second of two parts (read part 1)

If you want to understand gravity, it makes sense to study black holes. Nowhere else can you find so much gravity so conveniently compacted into such a relatively small space.

In a way, in fact, black holes are nothing but gravity. As Einstein showed, gravity is just the warping of spacetime, and black holes are big spacetime sinks. All the matter falling in gets homogenized into nothingness, leaving behind nothing but warped spacetime geometry.

Quantum computing and networking company IonQ has delivered a data center-ready trapped-ion quantum computer to the uptownBasel innovation campus in Arlesheim, Switzerland.

The IonQ Forte Enterprise quantum computer is the first of its kind to operate outside the United States and Switzerland’s first quantum computer designed for commercial use.

According to IonQ, Forte Enterprise is now online, servicing compute jobs while performing at a record algorithmic qubit count of #AQ36. The number of algorithmic qubits (#AQ) is a tool for showing how useful a quantum computer is at solving real problems for users by summarizing its ability to run benchmark quantum algorithms often used for applications.

Researchers have developed a technique called “atomic spray painting” using molecular beam epitaxy to strain-tune potassium niobate, enhancing its ferroelectric properties.

This method allows precise manipulation of material properties, with potential applications in green technologies, quantum computing, and space exploration.

Material Strain Tuning

After forty years, the creator of scar theory has observed the phenomenon in real time.

Quantum scarring is a phenomenon in which traveling electrons end up following the same repeating path.

Scars of Chaos: Visualizing Mysteries in Graphene Dots probabilities cluster along the paths of unstable orbits from their classical counterparts. These scars, while predicted, have remained elusive to direct observation—until now.
+
Using an innovative combination of graphene dot fabrication and advanced wavefunction mapping via scanning tunneling microscopy, researchers captured stunning images of scars. Within stadium-shaped GQDs, they observed striking lemniscate (∞-shaped) and streak-like probability patterns. These features recur at equal energy intervals, aligning with theoretical predictions for relativistic scars—a fascinating blend of mechanics and relativity.

The researchers further confirmed that these patterns are connected to two specific unstable periodic orbits within the GQD, bridging the chaotic motion of classical systems with the world. Beyond providing the first visual proof of scarring, this work lays the foundation for exploring other exotic scar phenomena, such as those induced by perturbations, chirality, or antiscarring effects.

This sets the stage for new discoveries in [#mechanics](https://www.facebook.com/hashtag/mechanics?__eep__=6&__cft__[0]=AZXPCRQF-knoMxWsHdGuAINl_hxSgWpjd9vUPszcDQDED9B4XtpXqPPhvcrED0NuOfXnWgthLMzgHmb5MWHbg6_KCiMiM3QaLJM2p6zXDiZd5oSUVWZeKR8qhHn2bevNFEnZj4T-bvc595A_jLYg-RLGWJOGrgLefEZI-7CDt6hSLX7CskI28RIoWnxvrZR2Xks&__tn__=*NK-R), [#chaos](https://www.facebook.com/hashtag/chaos?__eep__=6&__cft__[0]=AZXPCRQF-knoMxWsHdGuAINl_hxSgWpjd9vUPszcDQDED9B4XtpXqPPhvcrED0NuOfXnWgthLMzgHmb5MWHbg6_KCiMiM3QaLJM2p6zXDiZd5oSUVWZeKR8qhHn2bevNFEnZj4T-bvc595A_jLYg-RLGWJOGrgLefEZI-7CDt6hSLX7CskI28RIoWnxvrZR2Xks&__tn__=*NK-R) theory, and material science, with potential applications ranging from technologies to our understanding of fundamental physical laws.


Explore #quantum at Facebook.

Google’s latest quantum computer chip, which the team dubbed Willow, has ignited a heated debate in the scientific community over the existence of parallel universes.

Following an eye-opening achievement in computational problem-solving, claims have surfaced that the chip’s success aligns with the theory of a multiverse, a concept that suggests our universe is one of many coexisting in parallel dimensions. In this piece, we’ll examine both sides of this argument that seems to have opened up a parallel universe of its own — with one universe of scientists suggesting the Willow experiments offer evidence of a multiverse and the other suggesting it has nothing to do with the theory at all.

According to Google, Willow solved a computational problem in under five minutes — a task that would have taken the world’s fastest supercomputers approximately 10 septillion years. This staggering feat, announced in a blog post and accompanied by a study in the journal Nature, demonstrates the extraordinary potential of quantum computing to tackle problems once thought unsolvable within a human timeframe.