Menu

Blog

Archive for the ‘physics’ category: Page 81

Jul 17, 2022

James Webb proved it’s possible to look for alien life clues in the atmospheres of exoplanets

Posted by in categories: alien life, physics

Jul 16, 2022

Knots in the resonator: Elegant math in humble physics

Posted by in categories: mathematics, mobile phones, physics

At the heart of every resonator—be it a cello, a gravitational wave detector, or the antenna in your cell phone—there is a beautiful bit of mathematics that has been heretofore unacknowledged.

Yale physicists Jack Harris and Nicholas Read know this because they started finding knots in their data.

In a new study in the journal Nature, Harris, Read, and their co-authors describe a previously unknown characteristic of resonators. A is any object that vibrates only at a specific set of frequencies. They are ubiquitous in sensors, electronics, musical instruments, and other devices, where they are used to produce, amplify, or detect vibrations at specific frequencies.

Jul 14, 2022

Photonic fractals open a new area of topological physics

Posted by in category: physics

Physics World


Faster light is just one benefit of a new family of topological insulators.

Jul 13, 2022

Aquatic carnivorous plants with ultra-fast traps studied

Posted by in category: physics

Circa 2010


How do Utricularia, aquatic carnivorous plants commonly found in marshes, manage to capture their preys in less than a millisecond? A team of French physicists from the Laboratoire Interdisciplinaire de Physique has identified the ingenious mechanical process that enables the plant to ensnare any small, a little too curious aquatic animals that venture too closely. It is the reversal of its curvature and the release of the associated elastic energy that make it the fastest known aquatic trap in the world. These results are published on 16 February 2011 on the website of the journal Proceedings of the Royal Society of London B.

Utricularia are that capture small prey with remarkable suction . Utricularia are rootless plants formed of very thin, forked leaves on which wineskin-shaped traps, just a few millimeters in size, are attached. Only the flowers, standing on long stems, stick out of the water. The traps are underwater. When an aquatic animal (water fleas, cyclops, daphnia or small ) touches its sensitive hairs, the trap sucks it in, in a fraction of a second, along with water, which is then drained through its walls.

Continue reading “Aquatic carnivorous plants with ultra-fast traps studied” »

Jul 13, 2022

DeepMind AI learns simple physics like a baby

Posted by in categories: physics, robotics/AI

Inspired by research into how infants learn, computer scientists have created a program that can pick up simple physical rules about the behaviour of objects — and express surprise when they seem to violate those rules. The results were published on 11 July in Nature Human Behaviour1.

Developmental psychologists test how babies understand the motion of objects by tracking their gaze. When shown a video of, for example, a ball that suddenly disappears, the children express surprise, which researchers quantify by measuring how long the infants stare in a particular direction.

Luis Piloto, a computer scientist at Google-owned company DeepMind in London, and his collaborators wanted to develop a similar test for artificial intelligence (AI). The team trained a neural network — a software system that learns by spotting patterns in large amounts of data — with animated videos of simple objects such as cubes and balls.

Jul 12, 2022

What If Physics IS NOT Describing Reality?

Posted by in categories: physics, space

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Get your t-shirt at the Space Time Merch Store:
https://www.pbsspacetime.com/shop.

Continue reading “What If Physics IS NOT Describing Reality?” »

Jul 12, 2022

DeepMind AI learns physics

Posted by in categories: information science, physics, robotics/AI

An algorithm created by AI firm DeepMind can distinguish between videos in which objects obey the laws of physics and ones where they don’t.

Jul 11, 2022

Enter the General Relativity Rabbit Hole: Unraveling Space, Time and the Fourth Dimension

Posted by in categories: physics, space

Piecing together our universe’s most paradoxical and confusing, yet elegant and shatterproof, theory.

Jul 10, 2022

Peter Tse — What Makes Brains Conscious?

Posted by in categories: chemistry, mathematics, neuroscience, physics

Everything we know, think and feel—everything!—comes from our brains. But consciousness, our private sense of inner awareness, remains a mystery. Brain activities—spiking of neuronal impulses, sloshing of neurochemicals—are not at all the same thing as sights, sounds, smells, emotions. How on earth can our inner experiences be explained in physical terms?

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Continue reading “Peter Tse — What Makes Brains Conscious?” »

Jul 10, 2022

Dark matter: Our review suggests it’s time to ditch it in favor of a new theory of gravity

Posted by in categories: cosmology, physics

We can model the motions of planets in the Solar System quite accurately using Newton’s laws of physics. But in the early 1970s, scientists noticed that this didn’t work for disk galaxies —stars at their outer edges, far from the gravitational force of all the matter at their center—were moving much faster than Newton’s theory predicted.

This made physicists propose that an invisible substance called “dark ” was providing extra gravitational pull, causing the stars to speed up—a that’s become hugely popular. However, in a recent review my colleagues and I suggest that observations across a vast range of scales are much better explained in an alternative theory of gravity proposed by Israeli physicist Mordehai Milgrom in 1982 called Milgromian dynamics or Mond —requiring no invisible matter.

Mond’s main postulate is that when gravity becomes very weak, as occurs at the edge of galaxies, it starts behaving differently from Newtonian physics. In this way, it is possible to explain why stars, planets and gas in the outskirts of over 150 galaxies rotate faster than expected based on just their visible mass. But Mond doesn’t merely explain such rotation curves, in many cases, it predicts them.

Page 81 of 267First7879808182838485Last