Toggle light / dark theme

The science of predicting chaotic systems lies at the intriguing intersection of physics and computer science. This field delves into understanding and forecasting the unpredictable nature of systems where small initial changes can lead to significantly divergent outcomes. It’s a realm where the butterfly effect reigns supreme, challenging the traditional notions of predictability and order.

Central to the challenge in this domain is the unpredictability inherent in chaotic systems. Forecasting these systems is complex due to their sensitive dependence on initial conditions, making long-term predictions highly challenging. Researchers strive to find methods that can accurately anticipate the future states of such systems despite the inherent unpredictability.

Prior approaches in chaotic system prediction have largely centered around domain-specific and physics-based models. These models, informed by an understanding of the underlying physical processes, have been the traditional tools for tackling the complexities of chaotic systems. However, their effectiveness is often limited by the intricate nature of the systems they attempt to predict.

A study published today (Dec. 15) in the journal Astronomy & Astrophysics reveals the discovery of two new planetary systems orbiting stars similar to our sun, also known as solar analogs.

The study was led by Dr. Eder Martioli, a full researcher at the Laboratório Nacional de Astrofísica (LNA/MCTI) and an associate researcher at the Institut d’astrophysique de Paris (IAP), and by Dr. Guillaume Hébrard, a researcher at the Institut d’astrophysique de Paris (IAP).

Observations responsible for detecting these two systems, named TOI-1736 and TOI-2141, were conducted using NASA’s TESS space telescope and the SOPHIE spectrograph installed on the 1.93 m telescope at the Observatoire de Haute-Provence (OHP) in southern France, both illustrated in Figure 1.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.

If we ever want to simulate a universe, we should probably learn to simulate even a single atomic nucleus. But it’s taken some of the most incredible ingenuity of the past half-century to figure out how that out. All so that today I can teach you how to simulate a very very small universe.

Check out the Space Time Merch Store.

A s the mathematician De La Soul famously stated, three is the magic number. But if physicist Richard Feynman is to be believed, that figure is off by a factor of about 400. For Feynman, you see, the “magic number” is around 1/137 – specifically, it’s 1/137.03599913.

Physicists know it as α, or the fine structure constant. “It has been a mystery ever since it was discovered,” Feynman wrote in his 1985 book QED: The Strange Theory of Light and Matter. “All good theoretical physicists put this number up on their wall and worry about it.”

It’s both incredibly mysterious and unbelievably important: a seemingly random, dimensionless number, which nevertheless holds the secret to life itself.

Two galaxies in the early universe, which contain extremely productive star factories, have been studied by a team of scientists led by Chalmers University of Technology in Sweden. Using powerful telescopes to split the galaxies’ light into individual colours, the scientists were amazed to discover light from many different molecules – more than ever before at such distances. Studies like this could revolutionise our understanding of the lives of the most active galaxies when the universe was young, the researchers believe.

When the universe was young, galaxies were very different from today’s stately spirals, which are full of gently-shining suns and colourful gas clouds. New stars were being born, at rates hundreds of times faster than in today’s universe. Most of this however, was hidden behind thick layers of dust, making it a challenge for scientists to discover these star factories’ secrets – until now. By studying the most distant galaxies visible with powerful telescopes, astronomers can get glimpses of how these factories managed to create so many stars.

In a new study, published in the journal Astronomy & Astrophysics, a team of scientists led by Chalmers astronomer Chentao Yang, used the telescopes of NOEMA (NOrthern Extended Millimetre Array) in France to find out more about how these early star factories managed to create so many stars. Yang and his colleagues measured light from two luminous galaxies in the early universe – one of them classified as a quasar, and both with high rates of star formation.

Gravity is the reason things with mass or energy are attracted to each other. It is why apples fall toward the ground and planets orbit stars.

Magnets attract some types of metals, but they can also push other magnets away. So how come you feel only the pull of gravity?

In 1915, Albert Einstein figured out the answer when he published his theory of general relativity. The reason gravity pulls you toward the ground is that all objects with mass, like our Earth, actually bend and curve the fabric of the universe, called spacetime. That curvature is what you feel as gravity.