Toggle light / dark theme

The ATLAS Experiment at CERN has made two years’ worth of scientific data available to the public for research purposes. The data include recordings of proton–proton collisions from the Large Hadron Collider (LHC) at a collision energy of 13 TeV.

This is the first time that ATLAS has released data on this scale, and it marks a in terms of public access and utilization of LHC data.

“Open access is a core value of CERN and the ATLAS Collaboration,” says Andreas Hoecker, ATLAS Spokesperson. “Since its beginning, ATLAS has strived to make its results fully accessible and reusable through archives such as arXiv and HepData. ATLAS has routinely released open data for educational purposes. Now, we’re taking it one step further—inviting everyone to explore the data that led to our discoveries.”

A material with a high electron mobility is like a highway without traffic. Any electrons that flow into the material experience a commuter’s dream, breezing through without any obstacles or congestion to slow or scatter them off their path.

The higher a material’s electron mobility, the more efficient its , and the less energy is lost or wasted as electrons zip through. Advanced materials that exhibit high electron mobility will be essential for more efficient and sustainable electronic devices that can do more work with less power.

Now, physicists at MIT, the Army Research Lab, and elsewhere have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite—a class of mineral that is naturally found in deep hydrothermal deposits of gold and quartz.

Physicists have proposed a new theory: in the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge.

For every kilogram of matter that we can see — from the computer on your desk to distant stars and galaxies — there are 5kgs of invisible matter that suffuse our surroundings. This “dark matter” is a mysterious entity that evades all forms of direct observation yet makes its presence felt through its invisible pull on visible objects.

Fifty years ago, physicist Stephen Hawking offered one idea for what dark matter might be: a population of black holes, which might have formed very soon after the Big Bang. Such “primordial” black holes would not have been the goliaths that we detect today, but rather microscopic regions of ultradense matter that would have formed in the first quintillionth of a second following the Big Bang and then collapsed and scattered across the cosmos, tugging on surrounding space-time in ways that could explain the dark matter that we know today.

Join my mailing list https://briankeating.com/list to win a real 4 billion year old meteorite! All.edu emails in the USA 🇺🇸 will WIN!

What would Brian Greene do if he could travel through time, and which future technology is he most excited about?

After our full interview, I had the privilege to sit down with Brian and ask him a few more questions. Enjoy this exclusive Q\&A with one of the most renowned physicists of our time!

And if you haven’t already, check out our full interview: • Brian Greene: The Truth About String…

Brian Greene is an American theoretical physicist and mathematician. He’s a professor at Columbia University and the director of Columbia’s Center for Theoretical Physics. He has gained a lot of popularity through his books that bring complex physical issues closer to general audiences: The Elegant Universe (1999), Icarus at the Edge of Time (2008), The Fabric of the Cosmos (2004), and The Hidden Reality (2011), a book he promoted in the TV show The Big Bang Theory!

Additional resources:

Emergence, a fascinating and complex concept, illuminates how intricate patterns and behaviors can spring from simple interactions. It’s akin to marveling at a symphony, where each individual note, simple in itself, contributes to a rich, complex musical experience far surpassing the sum of its parts. Although definitions of emergence vary across disciplines, they converge on a common theme: small quantitative changes in a system’s parameters can lead to significant qualitative transformations in its behavior. These qualitative shifts represent different “regimes” where the fundamental “rules of the game”-the underlying principles or equations governing the behavior-change dramatically.

To make this abstract concept more tangible, let’s explore relatable examples from various fields:

1. Physics: Phase Transitions: Emergence is vividly illustrated through phase transitions, like water turning into ice. Here, minor temperature changes (quantitative parameter) lead to a drastic change from liquid to solid (qualitative behavior). Each molecule behaves simply, but collectively, they transition into a distinctly different state with their properties.

A group of physicists specialized in solid-state physics from the University of Cologne and international collaborators have examined crystals made from the material BaCO2V2O8 in the Cologne laboratory.

They discovered that the magnetic elementary excitations in the crystal are held together not only by attraction, but also by repulsive interactions. However, this results in a lower stability, making the observation of such repulsively bound states all the more surprising.

The results of the study, “Experimental observation of repulsively bound magnons,” are published in Nature.

Note that this does not involve Planck mass fermionic black holes!


A population of massive black holes whose origin is one of the biggest mysteries in modern astronomy has been detected by the LIGO and Virgo gravitational wave detectors.

According to one hypothesis, these objects may have formed in the very early Universe and may compose dark matter, a mysterious substance filling the Universe. A team of scientists has announced the results of nearly 20-year-long observations indicating that such massive black holes may comprise at most a few percent of dark matter. Therefore, another explanation is needed for gravitational wave sources.

The results of the study were published in two articles, in Nature and the Astrophysical Journal Supplement Series. The research was conducted by scientists from the OGLE (Optical Gravitational Lensing Experiment) survey from the Astronomical Observatory of the University of Warsaw.

Various astronomical observations indicate that ordinary matter, which we can see or touch, comprises only 5% of the total mass and energy budget of the Universe. In the Milky Way, for every pound of ordinary matter in stars, there are 15 pounds of “dark matter,” which does not emit any light and interacts only through its gravitational pull.

This essay addresses Cartesian duality and how its implicit dialectic might be repaired using physics and information theory. Our agenda is to describe a key distinction in the physical sciences that may provide a foundation for the distinction between mind and matter, and between sentient and intentional systems. From this perspective, it becomes tenable to talk about the physics of sentience and ‘forces’ that underwrite our beliefs (in the sense of probability distributions represented by our internal states), which may ground our mental states and consciousness. We will refer to this view as Markovian monism, which entails two claims: fundamentally, there is only one type of thing and only one type of irreducible property (hence monism). All systems possessing a Markov blanket have properties that are relevant for understanding the mind and consciousness: if such systems have mental properties, then they have them partly by virtue of possessing a Markov blanket (hence Markovian). Markovian monism rests upon the information geometry of random dynamic systems. In brief, the information geometry induced in any system—whose internal states can be distinguished from external states—must acquire a dual aspect. This dual aspect concerns the (intrinsic) information geometry of the probabilistic evolution of internal states and a separate (extrinsic) information geometry of probabilistic beliefs about external states that are parameterised by internal states. We call these intrinsic (i.e., mechanical, or state-based) and extrinsic (i.e., Markovian, or belief-based) information geometries, respectively. Although these mathematical notions may sound complicated, they are fairly straightforward to handle, and may offer a means through which to frame the origins of consciousness.

Keywords: consciousness, information geometry, Markovian monism.