Toggle light / dark theme

In the study, an international team of astronomers identified three supermassive black holes lurking near the center of galaxy NGC 6,240, which has been visibly disturbed by the gravitational effects of a triple merger. Because NGC 6,240 is so close—just 300 million light-years away—astronomers had previously assumed that its odd shape was the product of a typical merger between two galaxies. They believed that these two galaxies collided as they increased to hundreds of miles per second, and that they are still combining. Therefore, the researchers expected to find two supermassive black holes hiding near the center of the cosmic collision.

Instead, the team discovered three supermassive black holes, each weighing more than 90 million Suns, when they used 3D mapping techniques to peer into the core of NGC 6240. (To put this into perspective, Sagittarius A*, the supermassive black hole at the center of the Milky Way, is roughly 4 million solar masses in weight.) Furthermore, the three massive black holes of NGC 6,240 are confined to an area that is less than 3,000 light-years across, or less than 1% of the galaxy in which they are found.

“Up until now, such a concentration of three supermassive black holes had never been discovered in the universe,” said study co-author Peter Weilbacher of the Leibniz Institute for Astrophysics Potsdam in a press release. This is the first time that scientists have seen a group of supermassive black holes packed into such a small area, despite the fact that they have previously discovered three distinct galaxies and the black holes that are connected to them on a collision course.

From the article:

When Saha and Sinha took a closer look at the resulting equations, they realized that they could express the number pi in this way, as well as the zeta function, which is the heart of the Riemann conjecture, one of the greatest unsolved mysteries in mathematics.


Two physicists have come across infinitely many novel equations for pi while trying to develop a unifying theory of the fundamental forces.

In a paper published recently in the Journal of Applied Physics, an international team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory and Deutsches Elektronen-Synchrotron have developed a new sample configuration that improves the reliability of equation of state measurements in a pressure regime not previously achievable in the diamond anvil cell.

From afar, the Sun looks calm and peaceful in our daytime skies. But up close, it’s an erupting, chaotic display of solar activity the likes of which astrophysicists didn’t expect until the last year or so.

“We didn’t think the Sun was going to be as active this particular cycle, but the observations are completely opposite,” Andrew Gerrard, the department chair and director of the Center for Solar-Terrestrial Research at New Jersey Institute of Technology, told Business Insider.

Solar cycles typically occur every 11 years. Within that time, the Sun oscillates from minimum to maximum solar activity, with maximum activity peaking in the middle of the cycle when the Sun’s magnetic fields flip.

Materials that exhibit superconducting properties at high temperatures, known as high-temperature superconductors, have been the focus of numerous recent studies, as they can be used to develop new technologies that perform well at higher temperatures. Although high-temperature superconductivity has been widely investigated, its underlying physics is not yet fully understood.

Scientists may have found a new way to unlock the vast secrets of the Big Bang—the cosmic event thought to have kicked off the expansion of the universe billions of years ago. The revelation came in 2023, when scientists found nearly imperceptible ripples within the very fabric of space and time as we know it.

The ripples appear to be associated directly with rapidly spinning neutrons that we call pulsar timing arrays. Researchers believe that studying gravitational waves—more specifically, the low-frequency background hum they emit—may allow us to learn more about the Big Bang and the universe’s very beginning.

For a long time, researchers have believed that the low-frequency background hum of gravitational waves in our universe was part of a “phase transition” that occurred just after the Big Bang. However, a new bit of research could further unlock the secrets of the Big Bang and suggests that this might not be the case at all.