Toggle light / dark theme

Short Summary of a New Idea: Cryodynamics

Otto E. Rossler, Faculty of Science, University of Tubingen, Germany

Abstract

A brief history and description of cryodynamics is offered. While still in its infancy, it is already strong in basic findings and predictions. It is a classical science the quantum version of which still waits to be formulated. It is highly promising technologically. A new fundamental science is a rare event in history. The basic insight is to picture randomly moving hyperbolic tree trunks in Sinai’s “rolling tennis ball in an orchard game” (Harry Thomas’ term), but flipped upside down so that the trees are hollow funnels pointing downwards.

- — - -

Cryodynamics is a classical field which appears to be new. It is a sister discipline to thermodynamics and automatically has as many implications as the latter despite its belated discovery. So far but a few features have been elaborated. For example, its deterministic entropy function is identical to the Sackur-Tetrode equation as given by Diebner, but with inverted sign (“ectropy”). If confirmed it allows for a combined entropic and ectropic model of the universe. Then all direction-of-time bound models of the universe lose their validity. The problem of black hole recycling which poses itself in this case is still unsolved in spite of Hawking’s early stab.

Held against this big scenario, what is presently on hand is still limited. It is the discovery that if you subject a fast-moving low-energy classical particle to successive grazing-type encounters with attractive, rich-in-kinetic-energy particles, then the low-energy particle loses kinetic energy on average to the high-energy ones (“energetic capitalism”). This is very unexpected and paradoxical. Nevertheless the idea goes back to Zwicky in 1929 and Chandrasekhar in 1943, although it was not elaborated at the time.

The “miracle” is that if you invert the direction of time, the opposite behavior is implicit. All of the conceptual problems of thermodynamics are re-encountered. The second major feature is that the new phenomenon is numerically elusive for stiffness reasons. While the increasing disorder of entropy increase, valid in the repulsive case is a numerically stable feature in statistical thermodynamics, the decreasing order of ectropy increase, valid in the attractive case is not numerically stable. Very minor numerical deviations suffice to destroy the on-going decrease of entropy. This explains why in the thousands of multi-particle simulations done so far in galactic dynamics, to mention only this subcase, the phenomenon was never encountered numerically so far.

Another reason for the lack of resonance up until now is the fact that thermodynamics has always been understood as a statistical theory, with probability-theoretic axioms employed to describe it. While this is not false, it eschews the underlying deterministic, chaos-theoretic mechanism. The thereby incurred intrinsic inaccuracy did not cause much damage in thermodynamics so far, but cannot be transported over to cryodynamics. Cryodynamics does not emerge without prior acknowledgement of deterministic chaos as its root. (This new fact strongly constrains the accuracy of quantum mechanics — backwards in time — which is quite unexpected.)

Let me explain the simplest example which also worked numerically in the first two successful simulations so far. A fast-moving low-mass particle is subjected to encounters with a Newtonian potential trough into which it dips-in and then gets out again. If the trough is periodically or nonperiodically approaching and receding (modulated in its depth), a net effect results: a loss of energy of the traversing fast particle. If we invert time after a while, the exact opposite occurs up to the initial point, to from then on give way to the previous behavior, but now in the opposite direction of time.

The best way to understand all this is to invert the sign of the potentials. Then the opposite phenomenon, familiar from statistical thermodynamics, occurs: The periodically modulated trough is now replaced by a periodically modulated mound or tree. It is obvious that the recurrent unequal increases and decreases in the height of the hyperbolic mound amount to a qualitatively different effect in their sums.

To see this, think of a ball running frictionlessly through a forest of (at first fixed) trees with softly rising features. Then the ball will from time to time climb up a little and come down again – without losing or gaining in its net kinetic energy. Now let the trees be moving slowly at random (or periodically). Then the two cases – of the tree approaching the path of the up-climbing particle or receding from it – have different strengths (different mean heights). This explains dissipation. On inverting time after a while, the net gain becomes a net loss for the moving particle — until the initial condition is re-arrived at. Then the gaining streak sets in again, now in the new direction of time.

When we leave the repulsive case by inverting the tree stems into mirror-symmetric troughs, then the opposite thing happens to a ball running on the surface of this inverted landscape. This is the new phenomenon of cryodynamics, proved to the mental eye.

After this geometric proof, the numerical challenge clearly is on – especially so after the successful two cases published by Klaus Sonnleitner and Ramis Movassagh, respectively. The new science is waiting to be put on a broader computational basis.

Why is this important? The new cosmology that is implied clearly is not a sufficient motivation, given the fact that most everyone is happy with the old paradigm. So all that remains as a convincing reason for further research is an economically challenging application.

Such an application could be provided by the ITER, a hot-fusion reactor based on the Tokamak design: a torus-shaped, millions-of-degrees hot plasma that is magnetically confined in a metal ring. The plasma must not touch the (necessarily much colder) confining walls. This design is intrinsically unstable dynamically: The plasma tends to break out from the toroidal magnetic confinement to suddenly touch the wall somewhere to let the overall temperature collapse. No working prototype exists for decades. The current hope that following another quarter of a century, the machine will work, is being upheld with many billions of euros already sunk-in. Here, cryodynamics can be of help in principle. The paradoxical option: apply a heat bath of even hotter attractive particles at the location of the budding instability. Then these hotter attractive particles – like the inverted tree trunks – will cool the too hot nucleons, thus curbing the budding local protrusion.

“Cooling by hotter attractive particles” is the essence of cryodynamics. The hotter particles could be electrons shot-in concentrically into the budding hot spot. This is no problem in principle since even very much hotter electrons are easy to generate in small, dirigible-beam accelerators.

The idea was published under the title “Is hot fusion made feasible by the discovery of Cryodynamics?” in Advances in Intelligent Systems and Computing, Volume 192, pp. 1–4, Springer-Verlag 2013. It can still be patented since no design details were mentioned. This is a very lucrative technological proposal. No country or nation is interested so far nor are the oil companies.

Acknowledgments

Thank you that I was allowed to tell you the whole story in as brief a form as I could. I thank Dan Stein, Eric Klien, Christophe Letellier, Nico Heller, Heinz Clement and Jozsef Fortagh for discussions. Paper presented at the “CQ Colloquium” of the University of Tubingen on June 28, 2013. For J.O.R. (Submitted to Nature.)

Congratulations Drs. Musha, Pinheiro & Valone on their soon to be published new book.

For those who are interested T. Musha, M.J. Pinheiro and T. Valone (Advanced Science Technology Research Organization, Yokohama, Japan, and others) have a new book that will be published soon:

Book Description: The purpose in writing this book is to give an historical overview of a new challenging field of research, and equip the readers with the mathematical basis of gravitoelectromagnetic theories and their applications to advanced science and technology.
The first chapter introduces the historical background of electrogravity, especially on the Biefeld-Brown effect. The second chapter gives several explanations on the Biefeld-Brown effect and other related phenomena, with a concern on the Einstein’s Unified Field Theory of Gravitation and electromagnetism and gravitational anomaly induced by the massive electrostatic charges of planets. The third chapter is concerned with the electrogravitic effect related to the zero point energy fluctuation in the vacuum, introduced from the standpoint of quantum electrodynamics.
The fourth chapter discusses other electromagnetic gravity control devices including the Heim theory and their applications for space flight. The fifth chapter has shown that the Abraham force is the analogue of the Magnus force, and it thus represents the formation of vortex structures, of electromagnetic nature, in the physical vacuum: the electromagnetotoroid which can generate gravitational field. The sixth chapter deals with the plasma theory of the Universe and the role played by the gravitoelectromagnetic forces generated by the plasma permeating the space between planets. And the last chapter shows the application on advanced aviation systems and future prospects of these technologies.
This is a textbook written for both researchers and professional scientists, which provides the mathematical basis for readers to introduce the basic concept of gravitoelectromagnetic theories and also discusses their application to advanced science and technologies. (Imprint: Novinka)
Publisher’s link:
——————————————Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Mechanics of Gravity Modification

Posted in defense, education, engineering, general relativity, military, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Rocky Mountain chapter of the American Institute of Astronautics & Aeronautics (AIAA) will be having their 2nd Annual Technical Symposium, October 25 2013. The call for papers ends May 31 2013. I would recommend submitting your papers. This conference gives you the opportunity to put your work together in a cohesive manner, get feedback and keep your copyrights, before you write your final papers for journals you will submitting to. A great way to polish your papers.

Here is the link to the call for papers: http://www.iseti.us/pdf/RMAIAA_Call_For_Abstracts_2013-0507.pdf

Here is the link to the conference: http://www.iseti.us/pdf/RMAIAA_General_Advert_2013-0507.pdf

I’ll be presenting 2 papers. The first is a slightly revised version of the presentation I gave at the APS April 2013 conference here in Denver (http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(20…45;15).pdf). The second is titled ‘The Mechanics of Gravity Modification’.

Fabrizio Brocca from Italy wanted to know more about the Ni field shape for a rotating-spinning-disc. Finally, a question from someone who has read my book. This is not easy to explain over email, so I’m presenting the answers to his questions at this conference, as ‘The Mechanics of Gravity Modification’. That way I can reach many more people. Hope you can attend, read the book, and have your questions ready. I’m looking forward to your questions. This is going to be a lively discussion, and we can adjourn off conference.

My intention for using this forum to explain some of my research is straight forward. There will be (if I am correct) more than 100 aerospace companies in attendance, and I am expecting many of them will return to set up engineering programs to reproduce, test and explore gravity modification as a working technology.

Fabrizio Brocca I hope you can make it to Colorado this October, too.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

As long as a recently published proof (European Scientific Journal March 2013 edition vol.9, No.9 ISSN: 1857–7881(Print) e-ISSN 1857–7431) remains unchallenged by the scientific community, this question is not only scientifically sound but also maximally important.

It would be great if this uncommon call for scientific assistance by imaginative readers across the world would find the resonance it deserves . Einstein would be delighted.

I had a great time at APS 2013 held April 13 — 16, 2013. I presented my paper “Empirical Evidence Suggest A Different Gravitational Theory” in track T10, Tuesday afternoon. A copy of the slides is available at this link.

http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(20…45;15).pdf

Have fun.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

The APS April Meeting 2013, Vol. 58 #4 will be held Saturday–Tuesday, April 13–16, 2013; Denver, Colorado.

I am very pleased to announce that my abstract was accepted and I will be presenting “Empirical Evidence Suggest A Need For A Different Gravitational Theory” at this prestigious conference.

For those of you who can make it to Denver, April 13–16, and are interested in alternative gravitational theories, lets meet up.

I am especially interested in physicists and engineers who have the funding to test gravity modification technologies, proposed in my book An Introduction to Gravity Modification.

** Note, APS is the publisher of the most prestigious physics journal in the world, Physical Review Letters. If you remember Robert Nemiroff published his ground breaking findings that quantum foam cannot exists, 3 photons and 7-billion year old gamma ray burst in the Physical Review Letters.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

The University of Colorado Boulder holds its annual Gamow Memorial Lecture around this time of the year. This year, Feb 26, 2013, Brian Greene gave the lecture, on multiverses.

His talk was very good. He explained why there are 10500 possible variations to possible universes, and ours was just one of many possible universes, thus the term multiverse.

How interesting. This is an extension of the idea that the Earth or the Sun not being at the center of our Universe.

Brian Green graciously allowed me to have my picture taken with him at the reception held in honor of him after his lecture. In the middle picture I am getting ready my new Nokia Lumia 920 Windows 8 phone.

I may not agree with string theories, but I think it is vitally important to allow all forms of physical theories to take root, and let the community of physicists & engineers determine which theories have a better chance of explaining some aspect of the universal laws of physics, through discussions and experimentations. I would add, and drive new commercially viable technologies.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

1. Thou shalt first guard the Earth and preserve humanity.

Impact deflection and survival colonies hold the moral high ground above all other calls on public funds.

2. Thou shalt go into space with heavy lift rockets with hydrogen upper stages and not go extinct.

The human race can only go in one of two directions; space or extinction- right now we are an endangered species.

3. Thou shalt use the power of the atom to live on other worlds.

Nuclear energy is to the space age as steam was to the industrial revolution; chemical propulsion is useless for interplanetary travel and there is no solar energy in the outer solar system.

4. Thou shalt use nuclear weapons to travel through space.

Physical matter can barely contain chemical reactions; the only way to effectively harness nuclear energy to propel spaceships is to avoid containment problems completely- with bombs.

5. Thou shalt gather ice on the Moon as a shield and travel outbound.

The Moon has water for the minimum 14 foot thick radiation shield and is a safe place to light off a bomb propulsion system; it is the starting gate.

6. Thou shalt spin thy spaceships and rings and hollow spheres to create gravity and thrive.

Humankind requires Earth gravity and radiation to travel for years through space; anything less is a guarantee of failure.

7. Thou shalt harvest the Sun on the Moon and use the energy to power the Earth and propel spaceships with mighty beams.

8. Thou shalt freeze without damage the old and sick and revive them when a cure is found; only an indefinite lifespan will allow humankind to combine and survive. Only with this reprieve can we sleep and reach the stars.

9. Thou shalt build solar power stations in space hundreds of miles in diameter and with this power manufacture small black holes for starship engines.

10. Thou shalt build artificial intellects and with these beings escape the death of the universe and resurrect all who have died, joining all minds on a new plane.

I continue to survey the available technology applicable to spaceflight and there is little change.

The remarkable near impact and NEO on the same day seems to fly in the face of the experts quoting a probability of such coincidence being low on the scale of millenium. A recent exchange on a blog has given me the idea that perhaps crude is better. A much faster approach to a nuclear propelled spaceship might be more appropriate.

Unknown to the public there is such a thing as unobtanium. It carries the country name of my birth; Americium.

A certain form of Americium is ideal for a type of nuclear solid fuel rocket. Called a Fission Fragment Rocket, it is straight out of a 1950’s movie with massive thrust at the limit of human G-tolerance. Such a rocket produces large amounts of irradiated material and cannot be fired inside, near, or at the Earth’s magnetic field. The Moon is the place to assemble, test, and launch any nuclear mission.

Such Fission Fragment propelled spacecraft would resemble the original Tsolkovsky space train with a several hundred foot long slender skeleton mounting these one shot Americium boosters. The turn of the century deaf school master continues to predict.

Each lamp-shade-spherical thruster has a programmed design balancing the length and thrust of the burn. After being expended the boosters use a small secondary system to send them into an appropriate direction and probably equipped with small sensor packages, using the hot irradiated shell for an RTG. The Frame that served as a car of the space train transforms into a pair of satellite panels. Being more an artist than an *engineer, I find the monoplane configuration pleasing to the eye as well as being functional. These dozens and eventually thousands of dual purpose boosters would help form a space warning net.

The front of the space train is a large plastic sphere partially filled filled with water sent up from the surface of a a Robotic Lunar Polar Base. The Spaceship would split apart on a tether to generate artificial gravity with the lessening booster mass balanced by varying lengths of tether with an intermediate reactor mass.

These piloted impact threat interceptors would be manned by the United Nations Space Defense Force. All the Nuclear Powers would be represented.…..well, most of them. They would be capable of “fast missions” lasting only a month or at the most two months. They would be launched from underground silos on the Moon to deliver a nuclear weapon package towards an impact threat at the highest possible velocity and so the fastest intercept time. These ships would come back on a ballistic course with all their boosters expended to be rescued by recovery craft from the Moon upon return to the vicinity of Earth.

The key to this scenario is Americium 242. It is extremely expensive stuff. The only alternative is Nuclear Pulse Propulsion (NPP). The problem with bomb propulsion is the need to have a humungous mass for the most efficient size of bomb to react with.

The Logic Tree then splits again with two designs of bomb propelled ship; the “Orion” and the “Medusa.” The Orion is the original design using a metal plate and shock absorbing system. The Medusa is essentially a giant woven alloy parachute and tether system that replaces the plate with a much lighter “mega-sail.” In one of the few cases where compromise might bear fruit- the huge spinning ufo type disc, thousands of feet across, would serve quite well to explore, colonize, and intercept impact threats. Such a ship would require a couple decades to begin manufacture on the Moon.

Americium boosters could be built on earth and inserted into lunar orbit with Human Rated Heavy Lift Vehicles (SLS) and a mission launched well within a ten-year apollo type plan. But the Americium Infrastructure has to be available as a first step.

Would any of my hundreds of faithful followers be willing to assist me in circulating a petition?

*Actually I am neither an artist or an engineer- just a wannabe pulp writer in the mold of Edgar Rice Burroughs.

It is a riddle and almost a scandal: If you let a particle travel fast through a landscape of randomly moving round troughs – like a frictionless ball sent through a set of circling, softly rounded “teacups” inserted into the floor (to be seated in for a ride at a country fair) – you will find that it loses speed on average.

This is perplexing because if you invert time before throwing in the ball, the same thing is bound to happen again – since we did not specify the direction of time beforehand in our frictionless fairy’s universe. So the effect depends only on the “hypothesis of molecular chaos” being fulfilled – lack of initial correlations – in Boltzmann’s 19th century parlance. Boltzmann was the first to wonder about this amazing fact – although he looked only at the opposite case of upwards-inverted cups, that is, repulsive particles.

The simplest example does away with fully 2-dimensional interaction. All you need is a light horizontal particle travelling back and forth in a frictionless 1-dimensional closed transparent tube, plus a single attractive, much heavier particle moving slowly up and down in a frictionless transversal 1-dimensional closed transparent tube of its own – towards and away from the middle of the horizontal tube while exerting a Newtonian attractive force on the light fast particle across the common plane. Then the energy-poor fast particle still gets statistically deprived of energy by the energy-rich heavy slow particle in a sort of “energetic capitalism.”

If now the mass of the heavy particle is allowed to go to infinity while its speed and the force exerted by it remain unchanged, we arrive at a periodically forced single-degree-of-freedom Hamiltonian oscillator in the horizontal tube. What could be simpler? But you again get “antidissipation” – a statistical taking-away of kinetic energy from the light fast particle by the heavy slow one.

A first successful numerical simulation was obtained by Klaus Sonnleitner in 2010 – still with a finite mass-ratio and hence with explicit energy conservation. Ramis Movassagh obtained a similar result independently and proved it analytically. Both publications did not yet look at the simpler – purely periodically forced – limiting case just described: A single-degree-of-freedom, periodically forced conservative system. The simplest and oldest paradigm in Poincaréan chaos theory as the source of big news?

If we invert the potential (Newtonian-repulsive rather than Newtonian-attractive), the light particle now gains energy statistically from the heavy guy – in this simplest example of statistical thermodynamics (which the system now turns out to be). Thus, chaos theory becomes the fundament of many-particle physics: both on earth with its almost everywhere repulsive potentials (thermodynamics) and in the cosmos with its almost everywhere attractive potentials (cryodynamics). The essence of two fundamental disciplines – statistical thermodynamics and statistical cryodynamics – is implicit in our periodically forced single-tube horizontal particle. That tube represents the simplest nontrivial example in Hamiltonian dynamics including celestial mechanics, anyhow. But it now reveals two miraculous new properties: “deterministic entropy” generation under repulsive conditions, and “deterministic ectropy” generation under attractive conditions.

I would love to elicit the enthusiasm of young and old chaos aficionados across the planet because this new two-tiered fundamental discipline in physics based on chaos theory is bound to generate many novel implications – from revolutionizing cosmology to taming the fire of the sun down here on earth. There perhaps never existed a more economically and theoretically promising unified discipline. Simple computers suffice for deriving its most important features, almost all still un-harvested.

Another exciting fact: The present proposal will be taken lightly by most everyone in academic physics because Lifeboat is not an anonymously refereed outlet. But many young people on the planet do own computers and will appreciate the liberating truth that “non-anonymous peer review” carries the day – with them at the helm. So, please, join in. I for one was so far unable to extract the really simplest underlying principle: Why is it possible to have a time-directed behavior in a non-time-directed reversible dynamics if that time-directedness does not come from statistics, as everyone believes for the better part of two centuries? What is the real secret? And why does the latter come in two mutually at odds ways? We only have scratched at the surface of chaos so far. Boltzmann used that term in a clairvoyant fashion, did he not? (For J.O.R.)