Toggle light / dark theme

Could dynamos be installed in electric cars to provide a perpetual source of power?

We already recover power from the wheels of some cars when slowing. Kinetic energy recovery systems (KERS) have been used in Formula One racing to store energy in a flywheel when braking, and then push it back to the wheels later for a boost in speed. Electric cars often use regenerative braking, which converts the speed of the wheels into electrical power to recharge the battery. These systems are a great way to increase efficiency, but like everything in the Universe, they are not 100 per cent efficient. Sadly, the laws of physics prohibit the existence of true perpetual motion, so it’s the best we can do.

Read more

What Existed Before The Big Bang? Astronomers Have Found a Test to Narrow It Down

Today our middle-aged Universe looks eerily smooth. Too smooth, in fact.

While a rapid growth spurt in space-time would explain what we see, science needs more than nice ideas. It needs evidence that whittles away contending arguments. We might finally know where to look for some.

A team of physicists from the Centre for Astrophysics | Harvard & Smithsonian (CfA) and Harvard University went back to the drawing board on the early Universe’s evolution to give us a way to help those inflation models stand out from the crowd.

Which of the 5 Senses Is Best? Scientists Finally Settle a Heated Debate

If there is one thing Twitter has taught us, it’s that the world loves a question that sounds stupid but actually has a profound and interesting answer. For instance, what would happen if the world suddenly turned into blueberries, as answered by physics recently. Or what color is that dress?

In a similar way, perception scientists have recently been fighting it out on Twitter to answer the seemingly trivial question of: “Which is the best sense and why?” The debate has opened up some surprisingly deep questions — like what actually makes a sense more or less valuable? And, are some senses fundamentally more important in making us human?

The question was also put to a poll. While most people would probably assume the obvious winner is vision, “somatosensation” — which we normally refer to as touch but technically incorporates all sensations from our body — took the day. But does this vote hold up when you take a closer look at the scientific evidence?

LIGO to Resume Its Nobel-winning Hunt for Gravitational Waves

The hunt for gravitational waves is back on. After a series of upgrades, the National Science Foundation’s Laser Interferometer Gravitational-Wave Observatory (LIGO) will resume its search for ripples in space and time on Monday, April 1.

LIGO is famous for making the first direct detection of gravitational waves in 2015, for which the observatory’s founders were awarded the Nobel Prize. The observatory was able to detect gravity waves generated by two colliding black holes which were located 1.3 billion light-years away from Earth, and since then has observed nine more black hole mergers and one collision of two neutron stars.

Gravitational waves are ripples in the fabric of spacetime, caused by massive bodies which bend it like a bowling ball placed on a rubber sheet. They were predicted by Einstein as part of his general theory of relativity in 1916, but it took nearly a century for physicists to observe them because the effects are so small. Since these waves have been detected, they can be used to investigate cosmic objects as an alternative to light-based telescopes.

An experiment that solved a 100-year-old mystery posed by Einstein is about to turn back on — and it’s more powerful than ever

  • Colliding black holes and neutron stars create ripples in spacetime, called gravitational waves. These were “heard” for the first time in September 2015.
  • On Monday, a pair of gravitational-wave detectors called LIGO will turn back on after 6 months of downtime and upgrades.
  • To boost its power, the experiment will now work with a sister machine in Italy called Virgo.
  • Physicists expect the next period of searching for colliding black holes to last a year and be 40% more sensitive than before.

One of the most remarkable experiments in history — a pair of giant machines that listen for ripples in spacetime called gravitational waves — will wake up from a half-year nap on Monday. And it will be about 40% stronger than before.

That experiment is called the Laser Interferometer Gravitational-Wave Observatory (LIGO); it consists of two giant, L-shaped detectors that together solved a 100-year-old mystery posed by Albert Einstein.

This Superfluid Is Alive, And It Could Power Machines of the Future

Fluids with zero viscosity seemingly defy the laws of physics and they have endless applications. But they’ve been hard to make, until now. The secret? Bacteria!

Scientists’ Crazy Plan to Power Solar Panels With E. Coli — https://youtu.be/_XZGrZ3DeLg

Get 20% off http://www.domain.com domain names and web hosting when you use coupon code SEEKER at checkout!

Swarming Bacteria Create an ‘Impossible’ Superfluid.

Swarming Bacteria Create an ‘Impossible’ Superfluid


“Researchers explore a loophole that extracts useful energy from a fluid’s seemingly random motion. The secret? Sugar and asymmetry.”

More info about E. Coli
https://www.foodsafety.gov/poisoning/causes/bacteriaviruses/ecoli/index.html
“E. coli is the name of a type of bacteria that lives in your intestines and in the intestines of animals. Although most types of E. coli are harmless, some types can make you sick.”

Swimming bacteria work together to go with the flow

Why an Incredible New CERN Observation Has Physicists Popping Champagne

Scientists have announced the observation of “CP violation in a D meson” at CERN, a discovery that will appear in physics textbooks for years to come. You’re probably wondering what exactly it means.

The Universe is full of regular matter. There’s also antimatter, which exists even here on Earth, but there’s much less of it. This new observation is important on its own, but it also takes physicists another step closer to explaining where all the antimatter has disappeared to.

/* */