Toggle light / dark theme

Researchers in the US say they’ve created a fluid with negative mass in the lab… which is exactly as mind-bending as it sounds.

What it means is that, unlike pretty much every other known physical object, when you push this fluid, it accelerates backwards instead of moving forwards. Such an oddity could tell scientists about some of the strange behaviour that happens within black holes and neutron stars.

But let’s take a step back for a second here, because how can something have negative mass?

Read more

Once upon a time, two black holes collided, releasing energy which undulates across the universe. Little is known about these reverberations — dubbed “gravitational waves” — including how they were formed in the first place. However, a University of Birmingham astrophysicist told Sputnik science may now have the beginnings of an answer.

It’s believed that around 1.3 billion light years away from Earth, two black holes cataclysmically collided, releasing energy — gravitational waves — which undulates across the universe like ripples in a pool.

Gravitational waves had long been speculated upon, and were a major prediction of Albert Einstein’s 1915 general theory of relativity, but the existence of these wrinkles in the fabric of space-time was only confirmed in September 2015.

Read more

Arranging employees in an office is like creating a 13-dimensional matrix that triangulates human wants, corporate needs, and the cold hard laws of physics: Joe needs to be near Jane but Jane needs natural light, and Jim is sensitive to smells and can’t be near the kitchen but also needs to work with the product ideation and customer happiness team—oh, and Jane hates fans. Enter Autodesk’s Project Discover. Not only does the software apply the principles of generative design to a workspace, using algorithms to determine all possible paths to your #officegoals, but it was also the architect (so to speak) behind the firm’s newly opened space in Toronto.

That project, overseen by design firm The Living, first surveyed the 300 employees who would be moving in. What departments would you like to sit near? Are you a head-down worker or an interactive one? Project Discover generated 10,000 designs, exploring different combinations of high- and low-traffic areas, communal and private zones, and natural-light levels. Then it matched as many of the 300 workers as possible with their specific preferences, all while taking into account the constraints of the space itself. “Typically this kind of fine-resolution evaluation doesn’t make it into the design of an office space,” says Living founder David Benjamin. OK, humans—you got what you wanted. Now don’t screw it up.

Read more

Scientists throughout the country across a wide spectrum of fields, from biochemists to physicists, are bemoaning the potentially devastating impact on science and technology in the United States of President Trump’s proposed budget request to Congress.


Massive funding cuts in the president’s proposed budget could be more devastating than any threat posed by illegal immigrants.

Read more

Meanwhile, the Hubble image offered a clue about what dislodged the black hole from its galaxy’s centre. The host galaxy bore faint, arc-shaped features called tidal tales, which are produced by the gravitational tug-of-war that takes place when two galaxies collide. This suggested that galaxy 3C 186 had recently merged with another system, and perhaps their black holes merged too.

What happened next, scientists can only theorize. Chiaberge and his colleagues suggest that as the galaxies collided, their black holes began to circle each other, flinging out gravity waves “like water from a lawn sprinkler,” as NASA described it. If the black holes had unequal masses and spin rates, they might have sent more gravitational waves in one direction than the other. When the collision was complete, the newly merged black hole would have then recoiled from the strongest gravitational waves, shooting off in the opposite direction.

“This asymmetry depends on properties such as the mass and the relative orientation of the back holes’ rotation axes before the merger,” Colin Norman of STScI and Johns Hopkins University, a co-author on the paper, said in the NASA news release. “That’s why these objects are so rare.”

Read more

Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.

Though there have been several other suspected, similarly booted black holes elsewhere, none has been confirmed so far. Astronomers think this object, detected by NASA’s Hubble Space Telescope, is a very strong case. Weighing more than 1 billion suns, the rogue black hole is the most massive black hole ever detected to have been kicked out of its central home.

Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.

Read more

Earlier this year, physicists had put together a blueprint for how to make and measure time crystals — a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy.

Two separate research teams managed to create what looked an awful lot like time crystals back in January, and now both experiments have successfully passed peer-review for the first time, putting the ‘impossible’ phenomenon squarely in the realm of reality.

“We’ve taken these theoretical ideas that we’ve been poking around for the last couple of years and actually built it in the laboratory,” says one of the researchers, Andrew Potter from Texas University at Austin.

Read more