Toggle light / dark theme

CAS has announced the research program “Taiji” that will study gravitational waves from the merging of binary black holes and other celestial bodies.

Unlike the LIGO research conducted from a ground-based observatory, Taiji will conduct space-based detection on the gravitational waves with lower frequencies to observe celestial bodies with greater mass or located farther away in the universe, said Wu Yueliang, chief scientist of the Taiji program and an academician of CAS.

However, the gravitational wave signals from those celestial bodies are extremely weak, posing great challenges for detection. Scientists need to break through the limit of current precise measurement and control technology, Wu said.

Circa 2016


We humans are pretty into the idea of finding aliens, but have we really thought through what would happen if we stumbled across extraterrestrial intelligence that didn’t want to ‘come in peace’, and instead was hell-bent on mining our fair planet for everything it’s got?

No? Well, luckily for us reckless daydreamers, astronomers have our back, and have come up with a pretty solid plan that would cloak our planet from any bad-guy aliens out there looking for us. And it relies entirely on lasers (what else?).

So how does it work? In order to find planets outside our Solar System, we watch other stars and look for signs of their light dimming periodically, which indicates that a planet is passing in front of them.

Supernova explosions can crush ordinary stars into neutron stars, composed of exotic, extremely dense matter. Neutron stars are on the order of about 12 miles (20 km) across in contrast to hundreds of thousands of miles across for stars like our sun. Yet they contain mass on the order of 1.4 times that of our sun. Neutron stars have strong magnetic fields. They emit powerful blasts of radiation along their magnetic field lines. If, as a neutron star spins, its beams of radiation periodically point towards Earth, we see the star as a pulsing radio or gamma-ray source. Then the neutron star is also called a pulsar, often compared to a cosmic lighthouse. Modern astronomers know of pulsars spinning with mind-boggling rapidity. The second-fastest one – called PSR J0952-0607 – spins some 707 times a second! Scientists at the Max Planck Institute for Gravitational Physics in Hanover, Germany announced on September 19, 2019, that this pulsar, J0952-0607 – formerly seen only at the radio end of the spectrum – now has been found to pulse also in gamma rays.

J0952-0607 – the number relates to the object’s position in the sky – was first discovered in 2017. It was originally seen to pulse in radio waves, but not gamma rays. The international team that studied it in detail – and recently published new work about it in the peer-reviewed Astrophysical Journal – said in a statement:

The pulsar rotates 707 times in a single second and is therefore the fastest spinning in our galaxy outside the dense stellar environments of globular clusters.

An international research team led by the Max Planck Institute for Gravitational Physics (Albert Einstein Institute; AEI) in Hannover has discovered that the radio pulsar J0952-0607 also emits pulsed gamma radiation. J0952-0607 spins 707 times in one second and is second in the list of rapidly rotating neutron stars. By analyzing about 8.5 years worth of data from NASA’s Fermi Gamma-ray Space Telescope, LOFAR radio observations from the past two years, observations from two large optical telescopes, and gravitational-wave data from the LIGO detectors, the team used a multi-messenger approach to study the binary system of the pulsar and its lightweight companion in detail. Their study published in the Astrophysical Journal shows that extreme pulsar systems are hiding in the Fermi catalogs and motivates further searches. Despite being very extensive, the analysis also raises new unanswered questions about this system.

Pulsars are the compact remnants of stellar explosions which have strong magnetic fields and are rapidly rotating. They emit radiation like a cosmic lighthouse and can be observable as radio pulsars and/or gamma-ray pulsars depending on their orientation towards Earth.

Astronomers have detected the most massive neutron star ever, and it almost shouldn’t even exist.

Neutron stars are the smallest in the universe, with a diameter comparable to the size of a city like Chicago or Atlanta. They are the leftover remnants of supernovae. But they are incredibly dense, with masses bigger than that of our sun. So think of the sun, compressed into a major city.

In the case of the newly detected neutron star, dubbed J0740+6620, it’s 333,000 times the mass of the Earth and 2.17 times the mass of the sun. But the star is only about 15 miles across. It’s 4,600 light-years from Earth.

Humanist and technoscientific notions of progress have been (mis)used to classify human and nonhuman life forms into hierarchical categories, thereby reducing the complexities of life stories into a linear account of development and innovation. At the same time, critical reflections on key concepts of modernist, Eurocentric and industry-driven concepts of time and historicity and, more forcefully perhaps, new findings in evolutionary biology and physics, have produced alternative narratives, sometimes with a reconsideration of premodern understandings of temporality like, for example, Gilles Deleuze ’s rereading of Leibniz in The Fold.[1] The modernist conception of History (with a capital H) as both an empirical reality and a specific disciplinary and disciplining knowledge [2] has thus become just one possible manifestation within a plurality of histor ies conditioned by socio-cultural particularities that honour the experience of bodies that, voluntarily or not, live outside re/productive timelines, for example.

An increasing number of researchers as well as artists are no longer interested in the taking and making time and space as human universals but in genealogies, intersections, “multiple modernities”[3] and the coexistence of non-simultaneous phenomena in the era of globalization, asymmetrical power relations and technoculture. Moreover, post-anthropocentric thinking and creativity, fostered in posthumanist discourse (including new materialism, speculative realism, object-oriented ontology, neocybernetic systems theory, etc.), also increasingly attends to nonhuman temporalities and how these are entangled, often in conflicting ways, with human time. Such considerations include the vexing question of how emancipatory goals of progressive social trans/formation and justice can be envisaged, let alone obtained, if we can no longer ground our theories and political practices in enlightened narratives of humanist progress and liberation.

Despite the many, many problems we face in the world today, it is still an exciting time to be alive! As we speak, mission planners and engineers are developing the concepts that will soon take astronauts on voyages beyond Low Earth Orbit (LEO) for the first time in almost fifty years. In addition to returning to the Moon, we are also looking further afield to Mars and other distant places in the Solar System.

This presents a number of challenges, not the least of which are the effects of prolonged exposure to radiation and microgravity. And whereas there are many viable options for protecting crews from radiation, gravity remains a bit of a stumbling block. To address this, Youtuber smallstars has proposed a concept that he calls the Gravity Link Starship (GLS), a variation of SpaceX’s Starship that will be able to provide its own artificial gravity.

The idea was inspired in part by science fiction. Depending on how realistic a franchise is trying to be, starships will either generate their own gravity using some special device or through rotating sections. While the former concept is much like the hyperdrive (i.e. uses physics that are either totally fictitious or theoretical at this point), the latter is something that is entirely feasible.