Toggle light / dark theme

At CERN, eight-inch sensor chips from Infineon could reveal the mysteries of the universe

Ninety-five percent of the universe is still considered unexplored. Scientists at CERN, the world’s largest particle physics research center, located in Geneva, are working on solving these mysteries. In May 2012, researchers there discovered the so-called Higgs Boson, whose prediction won Peter Higgs and François Englert the Nobel prize in physics. One of the things CERN scientists are researching at the moment is dark matter: Although it may well have five times the mass of visible matter in the universe, this extent can only be indirectly proved. With a bit of luck, CERN will also succeed in generating dark matter.

A unique sensor chip can contribute to proving the existence of : It is eight inches or 15 cm x 10 cm and was developed jointly by Infineon Technologies Austria and the Austrian Academy of Sciences’ Institute of High Energy Physics (HEPHY). Tens of thousands of these silicon components could be used at CERN in the near future. They are not only more economical to produce than previous sensors, which measured up to six inches. The components also stand up better to constant radiation and thus age slower than the previous generation. Planned experiments will scarcely be possible without resistant sensors.

The experiments at CERN are analyzing the structure of matter and the interplay among elementary particles: Protons are accelerated almost to the speed of light and then made to collide, giving rise to new particles whose properties can be reconstructed with various detectors. “In and cosmology, there are many questions that are still open and to which mankind still has no answer,” says Dr. Manfred Krammer, head of the Experimental Physics Department at CERN. “To make new advances in these areas, we need a new generation of particle sensors. Cooperation with high-tech companies like Infineon allows us to develop the technologies we need for that.”

Supermassive black holes and dark matter create space ‘tunnels’, Lancaster university says

Dr Konstantinos Dimopoulos, a physicist at the University of Lancaster, believes that at the centre of some galaxies – where densely packed gas and dust burns incredibly brightly around a supermassive black hole – powerful magnetic fields which fire out from the jets of the black holes could affect the properties of dark matter.

As the burning galactic nucleus churns, Dr Dimopoulos claim that one type of dark matter in particular, made of theoretical particles called axions, would be affected.

Researchers create a first frequency comb of time-bin entangled qubits

Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute.

Now an international team of researchers has built a chip that generates multiple frequencies from a robust quantum system that produces time-bin entangled photons. In contrast to other quantum state realizations, entangled photons don’t need bulky equipment to keep them in their quantum state, and they can transmit quantum information across long distances. The new device creates entangled photons that span the traditional telecommunications spectrum, making it appealing for multi-channel quantum communication and more powerful quantum computers.

“The advantages of our chip are that it’s compact and cheap. It’s also unique that it operates on multiple channels,” said Michael Kues, Institut National de la Recherche Scientifique (INRS), University of Quebec, Canada.

Nanoparticles may help treat blood cancer

Nano-particles to treat Acute Myeloid Leukaemia.


A new therapeutic strategy for treating Acute Myeloid Leukaemia could involve using nano-particles to deliver a genetic molecule to fight the disease.

The nanoparticles carrying microRNA miR-22, (a small non-coding RNA molecule that regulates gene expression), showed therapeutic potential in mouse models of Acute Myeloid Leukemia (AML).

AML is a form of cancer of the blood cells which, despite intensive chemotherapy, is often fatal within one or two years from diagnosis.

Micro-sized, Liquid-metal Particles for Heat-free Soldering Developed

His lab is dedicated to an idea called frugal innovation: “How do you do very high-level science or engineering with very little?” said Thuo, an assistant professor of materials science and engineering at Iowa State University and an associate of the U.S. Department of Energy’s Ames Laboratory. “How can you solve a problem with the least amount of resources?”

That goal has Thuo and his research group using their materials expertise to study soft matter, single-molecule electronics and renewable energy production. A guiding principle is that, whenever possible, nature should do part of the work.

“Nature has a beautiful way of working for us,” he said. “Self-assembly and ambient oxidation are great tools in our designs.”

Physicists might soon be able to prove one of Stephen Hawking’s theories on black holes

Nice


Some 42 years ago, renowned theoretical physicist Stephen Hawking proposed that not everything that comes in contact with a black hole succumbs to its unfathomable nothingness.

Tiny particles of light (photons) are sometimes ejected back out, robbing the black hole of an infinitesimal amount of energy, and this gradual loss of mass over time means every black hole eventually evaporates out of existence.

Known as Hawking radiation, these escaping particles help us make sense of one of the greatest enigmas in the known Universe, but after more than four decades, no one’s been able to actually prove they exist, and Hawking’s proposal remained firmly in hypothesis territory.

Hi-res nanoparticle maps reveal best shape for batteries

Many recent big technological advances in computing, communications, energy, and biology have relied on nanoparticles. It can be hard to determine the best nanomaterials for these applications, however, because observing nanoparticles in action requires high spatial resolution in “messy,” dynamic environments.

In a recent step in this direction, a team of engineers has obtained a first look inside phase-changing nanoparticles, showing how their shape and crystallinity—the arrangement of atoms within the crystal—can have dramatic effects on their performance.

The work, which appears in Nature Materials, has immediate applications in the design of energy storage materials, but could eventually find its way into data storage, electronic switches, and any device in which the phase transformation of a material regulates its performance.

New artificial protein assembles materials at the nanoscale

HANOVER, N.H., April 26 (UPI) — Proteins are the contractors of the nanoscale natural world, assembling and building at the atomic, molecular and cellular levels. Increasingly, materials scientists are working to harness that power.

Recently, researchers at Dartmouth College created protein capable of crafting buckyball molecules. “Buckyball” is a nickname for buckminsterfullerene molecules, a soccer ball-shaped molecule of 60 carbon atoms.

The newly synthesized protein organizes buckyballs into a periodic lattice — a wall of buckyballs.

Superfast light source made from artificial atom

A new method to create light while retaining the energy using Q-Dot technology.


All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light as quickly as possible, before the energy is lost as heat. Superfast light sources can be used, for example, in laser lights, LED lights and in single-photon light sources for quantum technology. New research results from the Niels Bohr Institute show that light sources can be made much faster by using a principle that was predicted theoretically in 1954. The results are published in the scientific journal, Physical Review Letters.

Researchers at the Niels Bohr Institute are working with quantum dots, which are a kind of artificial atom that can be incorporated into optical chips. In a quantum dot, an electron can be excited (i.e. jump up), for example, by shining a light on it with a laser and the electron leaves a ‘hole’. The stronger the interaction between light and matter, the faster the electron decays back into the hole and the faster the light is emitted.

But the interaction between light and matter is naturally very weak and it makes the light sources very slow to emit light and this can reduce energy efficiency. Already in 1954, the physicist Robert Dicke predicted that the interaction between light and matter could be increased by having a number of atoms that ‘share’ the excited state in a quantum superposition.