Menu

Blog

Archive for the ‘particle physics’ category: Page 556

Feb 3, 2016

Germany is getting closer to nuclear fusion—the long-held dream of unlimited clean energy

Posted by in categories: nuclear energy, particle physics

German scientists today will set about the first steps towards what has become the Holy Grail of energy—nuclear fusion, which has the potential for unlimited amounts of clean power. There are a number of challenges to harnessing this power —researchers need to build a device that can heat atoms to temperatures of more than 100 million °C (180 million °F).

After almost nine years of construction work and more than a million assembly hours, researchers from the Max Planck Institute in Greifswald are set to do just that by heating a tiny amount of hydrogen until it becomes as hot, hopefully, as the center of the Sun.

Researchers are keen to tap into the incredible amount of energy released when atoms join together at extremely high temperatures in the super-hot gas known as plasma. Today’s test will not produce any energy, just the plasma—a different state of matter created at extremely high temperatures. German chancellor Angela Merkel, who has a doctorate in physics, will reportedly attend.

Read more

Feb 3, 2016

Quantum gas, liquid and crystal all-in-one

Posted by in categories: electronics, materials, neuroscience, particle physics, quantum physics

I don’t claim to be the expert on all things Quantum by no stretch; however, this is an amazing discovery and huge step forward for Quantum.

Quantum gas and liquid/ ferrofluid (quantum fluid made of tiny magnets). Now there’s a concept. Q-Dots as ferrofluid flowing through out your system (which is already comprised of about 72% H2O; think about how liquid Q-Dots can be easily absorb as a liquid and given your brain, heart, etc. run on electro charges and sensors; it could definitely open the discussion why even bother with nuero implants when Q-ferrofluid could actually be absorbed and manipulated to target the right areas for fighting diseases or improving brain functions.


The world of quantum mechanics happens only in small scales around a few nanometers. In this nanoworld, particles can behave like waves, and vice versa and have only some probability to be in a particular region. These effects can be directly observed in ultracold dilute gases. For this purpose thousands or a million atoms are cooled down to a few billionth of a degree above absolute zero. At such low temperatures particles become indistinguishable und unite collecitvely to a single giant matter wave called Bose-Einstein condensate which has astonishing properties. The matter wave flows as quantum fluid practically without inner friction, thus it is namedsuperfluid.

Researchers around Tilman Pfau at the Center for Integrated Quantum Science and Technology IQST in Stuttgart (Germany) created such a quantum fluid made of tiny magnets – that are atoms of the most magnetic element dysprosium. They call it “quantum ferrofluid” since it is superfluid and has magnetic properties similar to classical ferrofluids. Ferrofluids consist of ferromagnetic nanoparticles dissolved in oil or water. When a strong magnetic field is applied perpendicular to the surface of the ferrofluid it undergoes a so-called Rosensweig instability. The surface is no longer smooth like normal fluids, but it generates a regular thorny surface resembling a hedgehog. From the point view of the tiny magnets in a ferrofluid, every south- and northpole attract each other. Therefore, it is energetically favourable to be on top of each other along the field direction, so the fluid grows peaks out of the smooth surface.

Continue reading “Quantum gas, liquid and crystal all-in-one” »

Feb 3, 2016

Scientists in Germany Take a Major Step Towards Nuclear Fusion

Posted by in categories: nuclear energy, particle physics

Excellent news!


Physicists in Germany have used an experimental nuclear fusion device to produce hydrogen plasma in a process similar to what happens on the Sun. The test marks an important milestone on the road towards this super-futuristic source of cheap and clean nuclear energy.

Earlier today in an event attended by German Chancellor Angela Merkel (herself a PhD physicist), researchers from the Max Planck Institute in Greifswald turned on the Wendelstein 7-X stellarator, an experimental nuclear fusion reactor. (Actually, the researchers let Merkel do the honors.) This €400 million ($435 million) stellarator is being used by physicists to test the technical viability of a future fusion reactor.

Continue reading “Scientists in Germany Take a Major Step Towards Nuclear Fusion” »

Feb 2, 2016

Skyrmions could be the path to faster, denser hard drives

Posted by in categories: computing, particle physics

Research on skyrmions suggests that the vortex-shaped particles could potentially be used in denser, faster storage.

Read more

Feb 2, 2016

Can Photon Probabilities Change the World?

Posted by in categories: computing, materials, particle physics, quantum physics, transportation

Did you know that Quantum Theory does not know how probabilities are implemented in Nature? And for that matter neither does any other physical theory. Why? Or why not? The closest Quantum Theory comes to explaining probabilities, is to guess that a particle’s wave function is related to its probabilities. That’s it!

Why do we need to ask this question? Commercial opportunities. Imagine if you could control where a photon localizes (captured by an atom). Particle detectors become significantly more sensitive. Boring? No, in fact, DARPA aims to precisely spot single photons and explore the Fundamental Limits of Photon Detection. Anti-stealth is one application. Imagine if you didn’t need 1,000,000 radio wave photons to determine an aircraft’s radar signature, but only a 1,000?

Using probabilities to control photon switching “circuits”, probability switches. Imagine an empty box with optical cables entering and exiting. These probability switches cause photons to exit through different optical cables by controlling where they localize within the box. What if we could build computers with materials lighter than a feather to switch photon paths, instead of heavy silicon or gallium arsenide to switch electron paths? Imagine how fast these switches could operate, as no matter is involved.

Read more

Feb 2, 2016

Nanotechnology World Association

Posted by in categories: computing, electronics, nanotechnology, neuroscience, particle physics

UT RESEARCHERS DEVELOP ®EVOLUTIONARY CIRCUITS

Researchers of the MESA+ Institute for Nanotechnology and the CTIT Institute for ICT Research at the University of Twente in The Netherlands have demonstrated working electronic circuits that have been produced in a radically new way, using methods that resemble Darwinian evolution. The size of these circuits is comparable to the size of their conventional counterparts, but they are much closer to natural networks like the human brain. The findings promise a new generation of powerful, energy-efficient electronics, and have been published in the leading British journal Nature Nanotechnology.

One of the greatest successes of the 20th century has been the development of digital computers. During the last decades these computers have become more and more powerful by integrating ever smaller components on silicon chips. However, it is becoming increasingly hard and extremely expensive to continue this miniaturisation. Current transistors consist of only a handful of atoms. It is a major challenge to produce chips in which the millions of transistors have the same characteristics, and thus to make the chips operate properly. Another drawback is that their energy consumption is reaching unacceptable levels. It is obvious that one has to look for alternative directions, and it is interesting to see what we can learn from nature. Natural evolution has led to powerful ‘computers’ like the human brain, which can solve complex problems in an energy-efficient way. Nature exploits complex networks that can execute many tasks in parallel.

Read more

Feb 1, 2016

Is dark matter subatomic particles, a superfluid, or both?

Posted by in categories: cosmology, particle physics, quantum physics

The superfluid Universe.

Quantum effects are not just subatomic: they can be expressed across galaxies, and solve the puzzle of dark matter.

Read more

Feb 1, 2016

Less jitter, more bits: new material for detecting photons captures more quantum information

Posted by in categories: materials, nanotechnology, particle physics, quantum physics

Transport Quantum bits via superconducting nanowires. Definite step forward in information transmittal capabilities.


Although 74 picoseconds may not sound like much — a picosecond is a trillionth of a second — it is a big deal in the quantum world, where light particles, or photons, can carry valuable information. In this case it means that much less “jitter,” or uncertainty in the arrival time of a photon. Less jitter means that photons can be spaced more closely together but still be correctly detected. This enables communications at a higher bit rate, with more information transmitted in the same period.

Every little bit helps when trying to receive faint signals reliably. It helped, for example, in NIST’s recent quantum teleportation record and difficult tests of physics theories. In such experiments, researchers want to decode as much information as possible from the quantum properties of billions of photons, or determine if “entangled” photons have properties that are linked before — or only after — being measured.

Continue reading “Less jitter, more bits: new material for detecting photons captures more quantum information” »

Jan 31, 2016

New Kind of Dark Matter Could Form ‘Dark Atoms’

Posted by in categories: cosmology, particle physics

Physicists have proposed a new kind of dark matter that might consist of dark protons and dark electrons that could form dark atoms, and build up dark matter disks around galaxies.

Read more

Jan 29, 2016

New acoustic-tweezer design allows for 3D bioprinting

Posted by in category: particle physics

Illustration of a particle (red sphere) trapped by the 3D trapping node created by two superimposed, orthogonal (at right angles), standing surface acoustic waves and induced acoustic streaming (credit: Carnegie Mellon University)

A team of researchers at three universities has developed a way to use “acoustic tweezers” (which use ultrasonic surface acoustic waves, or SAWs, to trap and manipulate micrometer-scale particles and biological cells — see “Acoustic tweezers manipulate cellular-scale objects with ultrasound “) to non-invasively pick up and move single cells in three mutually orthogonal axes of motion (three dimensions).

The new 3D acoustic tweezers can pick up single cells or entire cell assemblies and deliver them to desired locations to create 2D and 3D cell patterns, or print the cells into complex shapes — a promising new method for “3D bioprinting” in biological tissues, the researchers say in an open-access paper in the Proceedings of the National Academy of Sciences (PNAS).

Read more