Menu

Blog

Archive for the ‘particle physics’ category: Page 553

Feb 29, 2016

A Material That’s Better Than Graphene? Scientists Say They’ve Found it

Posted by in categories: materials, particle physics

What could be better than a material that’s super flexible, only one atom thick, and is 200 times stronger than steel? A material that’s equally strong and flexible, also only one atom thick, and inexpensive.

Scientists are asserting that this new discovery could potentially upstage the world’s greatest wonder material, graphene.

Read more

Feb 26, 2016

Physicists May Have Discovered a New “Tetraquark” Particle

Posted by in category: particle physics

Data from the DZero experiment shows evidence of a particle containing four different types of quarks.

By Clara Moskowitz on February 26, 2016.

Read more

Feb 26, 2016

NASA’s IBEX Observations Pin Down Interstellar Magnetic Field

Posted by in categories: materials, particle physics, space

The new paper is based on one particular theory of the origin of the IBEX ribbon, in which the particles streaming in from the ribbon are actually solar material reflected back at us after a long journey to the edges of the sun’s magnetic boundaries. (NASA Image)

BREVARD COUNTY, FLORIDA – The new paper is based on one particular theory of the origin of the IBEX ribbon, in which the particles streaming in from the ribbon are actually solar material reflected back at us after a long journey to the edges of the sun’s magnetic boundaries.

A giant bubble, known as the heliosphere, exists around the sun and is filled with what’s called solar wind, the sun’s constant outflow of ionized gas, known as plasma.

Continue reading “NASA’s IBEX Observations Pin Down Interstellar Magnetic Field” »

Feb 26, 2016

Scientists happily surprised to find truffles free of Chernobyl radiation

Posted by in categories: food, nuclear energy, particle physics

This will make friends Vladimir and Marina happy.


Mushrooms and game meat in European regions where Chernobyl fallout was most intense still have excess radiation, but Burgundy truffles get the green light; foodies rejoice.

It’s been 30 years since the 1986 nuclear disaster in Ukraine in which a fire and explosion at the Chernobyl Nuclear Power Plant unleashed a slew of radioactive particles into the atmosphere. Swept along by winds and settled by heavy rains, radioactive particles, especially caesium-137 (137Cs), polluted large stretches of the European continent. And we all know the problem with radioactive things, they’ve got lasting power.

Continue reading “Scientists happily surprised to find truffles free of Chernobyl radiation” »

Feb 25, 2016

Upper limit found for quantum world

Posted by in categories: particle physics, quantum physics

The quantum world and our world of perception obey different natural laws. Leiden physicists search for the border between both worlds. Now they suggest an upper limit in a study reported in Physical Review Letters.

The laws of the quantum domain do not apply to our everyday lives. We are used to assigning an exact location and time to objects. But fundamental particles can only be described by probability distributions—imagine receiving a traffic ticket for speeding 30 to 250 km/h somewhere between Paris and Berlin, with a probability peak for 140 km/h in Frankfurt.

Boundary

Continue reading “Upper limit found for quantum world” »

Feb 25, 2016

Prove the Multiverse or Die Trying

Posted by in categories: cosmology, particle physics, quantum physics

Quantum mechanics is littered with different interpretations, but at the core of the entire school of thought is the question of whether there are multiple universes of not. At the core of this idea is the thought, explicated by quantum mechanics, that everything we observe is simply the collapse of all probable scenarios into one specific outcome. Reality, viewed from that perspective, has a very cluttered cutting room floor. But are the things removed from the reel scraps or alternative narratives? There’s the big question.

To answer that question, we need to dive a bit into the mechanisms of the thing. Quantum mechanics says that all particles in the universe can be represented by what are called “wave functions.” A single wave function basically illustrates all the information about a specific system (i.e. a particle), detailing everything from position to velocity. The wave function itself also outlines all the probable outcomes of that system as well.

Continue reading “Prove the Multiverse or Die Trying” »

Feb 22, 2016

A different picture of quantum surrealism

Posted by in categories: particle physics, quantum physics

New research supports an old, more intuitive theory of how sub-atomic particles behave. Cathal O’Connell explains.

Read more

Feb 21, 2016

Sudan Vision Daily — Details

Posted by in categories: nanotechnology, particle physics, quantum physics, space travel

Love on a Subatomic Scale.


When talking about love and romance, people often bring up unseen and mystical connections. Such connections exist in the subatomic world as well, thanks to a bizarre and counterintuitive phenomenon called quantum entanglement. The basic idea of quantum entanglement is that two particles can be intimately linked to each other even if separated by billions of light-years of space; a change induced in one will affect the other. In 1964, physicist John Bell posited that such changes can occur instantaneously, even if the particles are very far apart. Bell’s Theorem is regarded as an important idea in modern physics, but it seems to make little sense. After all, Albert Einstein had proven years before that information cannot travel faster than the speed of light. Indeed, Einstein famously described the entanglement phenomenon as “spooky action at a distance.” In the last half-century, many researchers have run experiments that aimed to test Bell’s Theorem. But they have tended to come up short because it’s tough to design and build equipment with the needed sensitivity and performance, NASA officials said. Last year, however, three different research groups were able to perform substantive tests of Bell’s Theorem, and all of them found support for the basic idea. One of those studies was led by Krister Shalm, a physicist with the National Institute of Standards and Technology (NIST) in Boulder, Colorado. Shalm and his colleagues used special metal strips cooled to cryogenic temperatures, which makes them superconducting — they have no electrical resistance. A photon hits the metal and turns it back into a normal electrical conductor for a split second, and scientists can see that happen. This technique allowed the researchers to see how, if at all, their measurements of one photon affected the other photon in an entangled pair. The results, which were published in the journal Physical Review Letters, strongly backed Bell’s Theorem. “Our paper and the other two published last year show that Bell was right: any model of the world that contains hidden variables must also allow for entangled particles to influence one another at a distance,” co-author Francesco Marsili, of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, said in a statement. There are practical applications to this work as well. The “superconducting nanowire single photon detectors” (SNSPDs) used in the Shalm group’s experiment, which were built at NIST and JPL, could be used in cryptography and in deep-space communications, NASA officials said. NASA’s Lunar Atmosphere Dust and Environment Explorer (LADEE) mission, which orbited the moon from October 2013 to April 2014, helped demonstrate some of this communications potential. LADEE’s Lunar Laser Communication Demonstration used components on the spacecraft and a ground-based receiver similar to SNSPDs. The experiment showed that it might be possible to build sensitive laser communications arrays that would enable much more data to be up- and downloaded to faraway space probes, NASA officials said.

Read more

Feb 19, 2016

Researchers demonstrate ‘quantum surrealism’

Posted by in categories: particle physics, quantum physics

Proving Quantum


New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there’s a catch — the tracks the particles follow do not always behave as one would expect from “realistic” trajectories, but often in a fashion that has been termed “surrealistic.”

In a new version of an old experiment, CIFAR Senior Fellow Aephraim Steinberg (University of Toronto) and colleagues tracked the of photons as the particles traced a path through one of two slits and onto a screen. But the researchers went further, and observed the “nonlocal” influence of another photon that the first photon had been entangled with.

Continue reading “Researchers demonstrate ‘quantum surrealism’” »

Feb 18, 2016

ISRO is developing a nano satellite to monitor suspended particles in polluted Indian cities

Posted by in categories: particle physics, quantum physics, satellites

Nano Satellite could be interesting and even expanded upon especially as we look to expand the usage of Quantum Technology across various wireless devices in the future as well as microbot technology to enable connectivity to the cloud and other wireless devices.


The nano-satellite, which is among ISRO’s important missions, will monitor air pollutants that pollute cities including Delhi, Lucknow, Amritsar and Allahabad.

The nano-satellite will weigh 15kg and placed 500 km above the earth.

Continue reading “ISRO is developing a nano satellite to monitor suspended particles in polluted Indian cities” »