Toggle light / dark theme

Artificial intelligence designs metamaterials used in the invisibility cloak

Metamaterials are artificial materials engineered to have properties not found in naturally occurring materials, and they are best known as materials for invisibility cloaks often featured in sci-fi novels or games. By precisely designing artificial atoms smaller than the wavelength of light, and by controlling the polarization and spin of light, researchers achieve new optical properties that are not found in nature. However, the current process requires much trial and error to find the right material. Such efforts are time-consuming and inefficient; artificial intelligence (AI) could provide a solution for this problem.

The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH have developed a design with a higher degree of freedom that allows researchers to choose materials and design photonic structures arbitrarily by using deep learning. Their findings are published in several journals including Applied Materials and Interfaces, Nanophotonics, Microsystems & Nanoengineering, Optics Express, and Scientific Reports.

AI can be trained with a vast amount of data, and it can learn designs of various and the correlation between photonic structures and their optical properties. Using this training process, it can provide a that makes a photonic structure with desired optical properties. Once trained, it can provide a desired design promptly and efficiently. This has already been researched at various institutions in the U.S. such as MIT, Stanford University and Georgia Institute of Technology. However, the previous studies require inputs of materials and structural parameters beforehand, and adjusting photonic structures afterwards.

Path to Million Qubit Quantum Computers Using Atoms and Lasers

Atom Computing is building quantum computers using individually controlled atoms.

As one of the world’s leading researchers in atomic clocks and neutral atoms, Benjamin Bloom (co-founder of Atom Computing) built the world’s fastest atomic clock, and it is considered the most precise and accurate measurement ever performed.

Ben has shown that neutral atoms could be more scalable, and could build a stable solution to create and maintain controlled quantum states. He used his expertise to lead efforts at Intel on their 10nm semiconductor chip, and then to lead research and development of the first cloud-accessible quantum computer at Rigetti.

Physicists Reverse Time for Tiny Particles Inside a Quantum Computer

Time goes in one direction: forward. Little boys become old men but not vice versa; teacups shatter but never spontaneously reassemble. This cruel and immutable property of the universe, called the “arrow of time,” is fundamentally a consequence of the second law of thermodynamics, which dictates that systems will always tend to become more disordered over time. But recently, researchers from the U.S. and Russia have bent that arrow just a bit — at least for subatomic particles.

In the new study, published Tuesday (Mar. 12) in the journal Scientific Reports, researchers manipulated the arrow of time using a very tiny quantum computer made of two quantum particles, known as qubits, that performed calculations. [Twisted Physics: 7 Mind-Blowing Findings]

At the subatomic scale, where the odd rules of quantum mechanics hold sway, physicists describe the state of systems through a mathematical construct called a wave function. This function is an expression of all the possible states the system could be in — even, in the case of a particle, all the possible locations it could be in — and the probability of the system being in any of those states at any given time. Generally, as time passes, wave functions spread out; a particle’s possible location can be farther away if you wait an hour than if you wait 5 minutes.

Scientists Just Unveiled The First-Ever Photo of Quantum Entanglement

In an incredible first, scientists have captured the world’s first actual photo of quantum entanglement — a phenomenon so strange, physicist Albert Einstein famously described it as ‘spooky action at a distance’.

The image was captured by physicists at the University of Glasgow in Scotland, and it’s so breathtaking we can’t stop staring.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image is the first time we’ve seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Bacteria Could Help Mass-Produce Wonder Material Graphene At Scale

There’s no doubting that graphene, a single layer of graphite with the atoms arranged in a honeycomb hexagonal pattern, is one of science’s most versatile new materials. Capable of doing everything from filtering the color out of whisky to creating body armor that’s stronger than diamonds, graphene exhibits some truly unique qualities. However, while some mainstream uses of graphene have emerged, its use remains limited due to the challenge of producing it at scale. The most common way to make graphene still involves using sticky tape to strip a layer of atoms off ordinary graphite.

That’s something that researchers from the University of Rochester and the Netherlands’ Delft University of Technology have been working to change. They’ve figured out a way to mass produce graphene by mixing oxidized graphite with bacteria. Their method is cost-efficient, time-efficient, and sustainable — and may just make graphene a whole lot more available in the process.

“In our research, we have used bacteria to produce graphene materials on a bulk scale, and we showed that our material is conductive, and both thinner and able to be stored longer than chemically produced graphene materials,” Anne Meyer, professor of biology at the University of Rochester, told Digital Trends. “These properties demonstrate that our bacterial graphene would be well suited for a variety of applications, such as electrical ink or lightweight biosensors. Our approach is also incredibly simple and environmentally friendly compared to chemical approaches. All we have to do is mix our bacteria with the graphene precursor material, and leave them sitting on the benchtop overnight.”

Welcome to Experiments that Time has Forgotten!

Courtesy of Microcosmos ISBN 0 521 30433 4

© Cambridge University Press 1987

fig. 7.

ATOMS

The smallest unit of matter that can be imaged my microscopy today is the atom. The use of high resolution electron microscopy or HREM enables the scientist to study the neat lines and rows of atoms arranged in their unit cells. The world of atomic level microscopy is bathed in hyperbole. Imaging an atom at a magnification of x 100 million is equivalent to observing from Earth the golf ball that Neil Armstrong hit on the moon. The microscopists at the forefront of high resolution imaging are now trying to read the golf ball’s number!

Strange warping geometry helps to push scientific boundaries

Atomic interactions in everyday solids and liquids are so complex that some of these materials’ properties continue to elude physicists’ understanding. Solving the problems mathematically is beyond the capabilities of modern computers, so scientists at Princeton University have turned to an unusual branch of geometry instead.

Researchers led by Andrew Houck, a professor of electrical engineering, have built an electronic array on a microchip that simulates in a hyperbolic plane, a geometric surface in which space curves away from itself at every point. A hyperbolic plane is difficult to envision—the artist M.C. Escher used in many of his mind-bending pieces—but is perfect for answering questions about particle interactions and other challenging mathematical questions.

The research team used superconducting circuits to create a lattice that functions as a hyperbolic space. When the researchers introduce photons into the lattice, they can answer a wide range of difficult questions by observing the photons’ interactions in simulated hyperbolic space.