Menu

Blog

Archive for the ‘particle physics’ category: Page 453

Jul 11, 2019

Quantum sensor breakthrough using naturally occurring vibrations in artificial atoms

Posted by in categories: particle physics, quantum physics

A team of scientists, led by the University of Bristol, have discovered a new method that could be used to build quantum sensors with ultra-high precision.

When emit , they do so in discrete packets called photons.

When this light is measured, this discrete or ‘granular’ nature leads to especially low fluctuations in its brightness, as two or more photons are never emitted at the same time.

Jul 11, 2019

Secure quantum communications in the microwave range for the first time

Posted by in categories: computing, particle physics, quantum physics

Mikel Sanz, of the Physical Chemistry Department of UPV/EHU, leads the theoretical group for an experiment published by the prestigious journal, Nature Communications. The experiment has managed to prepare a remote quantum state; i.e., absolutely secure communication was established with another, physically separated quantum computer for the first time in the microwave regime. This new technology may bring about a revolution in the next few years.

Within the greater European project of the Quantum Flagship, spearheaded by Mikel Sanz—researcher of the QUTIS Group of the UPV/EHU Physical Chemistry Department—an experiment has been conducted in collaboration with German and Japanese researchers who have managed to develop a protocol for preparing a remote quantum state while conducting in the regime, “which is the frequency at which all quantum computers operate. This is the first time the possibility of doing so in this range has been examined, which may bring about a revolution in the next few years in the field of secure quantum communication and quantum microwave radars,” lead researcher in this project Mikel Sanz observes.

The preparation of a remote quantum state (known as remote state preparation) is based on the phenomenon of quantum entanglement, where sets of entangled particles lose their individuality and behave as single entities, even when spatially separated. “Thus, if two computers share this quantum correlation, performing operations on only one of them can affect the other. Absolutely secure communication can be achieved,” Sanz explains.

Jul 10, 2019

Physicists’ finding could revolutionize information transmission

Posted by in categories: particle physics, quantum physics

Move aside, electrons; it’s time to make way for the trion.

A research team led by physicists at the University of California, Riverside, has observed, characterized, and controlled dark trions in a semiconductor—ultraclean single-layer tungsten diselenide (WSe2)—a feat that could increase the capacity and alter the form of transmission.

In a semiconductor, such as WSe2, a trion is a quantum bound state of three charged particles. A negative trion contains two electrons and one hole; a positive trion contains two holes and one electron. A hole is the vacancy of an electron in a semiconductor, which behaves like a positively charged particle. Because a trion contains three interacting particles, it can carry much more information than a .

Jul 10, 2019

Solving problems on a quantum chessboard

Posted by in categories: particle physics, quantum physics, supercomputing

Physicists at the University of Innsbruck are proposing a new model that could demonstrate the supremacy of quantum computers over classical supercomputers in solving optimization problems. In a recent paper, they demonstrate that just a few quantum particles would be sufficient to solve the mathematically difficult N-queens problem in chess even for large chess boards.

Jul 9, 2019

Microrobots to change the way we work with cellular material

Posted by in categories: particle physics, robotics/AI

Some of you are going to want to use this tech.


In a new study published in the Proceedings of the National Academy of Sciences, researchers from University of Toronto have demonstrated a novel and non-invasive way to manipulate cells through microrobotics.

Cell manipulation—moving small particles from one place to another—is an integral part of many scientific endeavours. One method of manipulating is through optoelectronic tweezers (OET), which use various light patterns to directly interact with the object of interest.

Continue reading “Microrobots to change the way we work with cellular material” »

Jul 9, 2019

Characterizing the ‘arrow of time’ in open quantum systems

Posted by in categories: particle physics, quantum physics

Even in the strange world of open quantum systems, the arrow of time points steadily forward—most of the time. New experiments conducted at Washington University in St. Louis compare the forward and reverse trajectories of superconducting circuits called qubits, and find that they follow the second law of thermodynamics. The research is published July 9 in the journal Physical Review Letters.

“When you look at a quantum system, the act of measuring usually changes the way it behaves,” said Kater Murch, associate professor of physics in Arts & Sciences. “Imagine shining light on a small particle. The photons end up pushing it around and there is a dynamic associated with the measurement process alone.

Continue reading “Characterizing the ‘arrow of time’ in open quantum systems” »

Jul 8, 2019

Simulation shows nuclear pasta 10 billion times harder to break than steel

Posted by in categories: computing, particle physics

A trio of researchers affiliated with several institutions in the U.S. and Canada has found evidence that suggests nuclear material beneath the surface of neutron stars may be the strongest material in the universe. In their paper published in the journal Physical Review Letters, M. E. Caplan, A. Schneider, and C. J. Horowitz describe their neutron star simulation and what it showed.

Prior research has shown that when reach a certain age, they explode and collapse into a mass of neutrons; hence the name star. And because they lose their neutrinos, become extremely densely packed. Prior research has also found evidence that suggests the surface of such stars is so dense that the material would be incredibly strong. In this new effort, the researchers report evidence suggesting that the material just below the surface is even stronger.

Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the . Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna. Caplan, Schneider and Horowitz wondered about the density of these formations—would they be denser and thus stronger even than material on the crust? To find out, they created some computer simulations.

Jul 8, 2019

Scientists Are Hunting For A Mirror Universe And Attempting To Open Portals Into It

Posted by in categories: cosmology, particle physics

Imagine a world where everything is exactly the same as this one but no one knows of its existence, even though it could be staring you right in the face. These are called mirror universes — a parallel world in a different time space. While this prospect may seem a bit fetched to many, Leah Broussard believes that these parallel universes are actually very real. In fact, she, along with her colleagues at Oak Ridge National Laboratory in Tennessee, is on the hunt for a mirror universe and plans on opening portals to them.

Broussard is attempting to open a portal to a parallel universe by, what she calls “oscillation” which would eventually lead her to mirror matter. To conduct these experiments during the upcoming summer, Broussard will send a beam of subatomic particles down a 50-foot tunnel, past a powerful magnet, and into an impenetrable wall.

So what’s the point of that? Well, if the setup is just right, some of those particles will transform into mirror-image versions of themselves, allowing them to tunnel right through the wall. If it works, this would be the first proof of a mirror universe. The whole experiment will only take around a day but analyzing the data will take many weeks afterward. Either way, it won’t be long before the results are published.

Jul 8, 2019

Quantum Particles Found Exhibiting Immortality Through “Infinite Decay And Rebirth”

Posted by in categories: computing, life extension, particle physics, quantum physics

https://youtube.com/watch?v=hyx6tBTk1p0

We know that the rule “nothing lasts forever” holds true for everything. But the world of quantum particles doesn’t always seem to follow the rules.

In the latest findings, scientists have observed that quasiparticles in quantum systems could be virtually immortal. These particles can regenerate themselves after they have decayed — and this can have a significant impact on the future of quantum computing and humanity itself.

Continue reading “Quantum Particles Found Exhibiting Immortality Through ‘Infinite Decay And Rebirth’” »

Jul 8, 2019

NASA’s New Space Engine Is Powered by Nuclear Fission

Posted by in categories: nuclear energy, particle physics, security, space travel

From returning to the Moon to establishing outposts on Mars, NASA has the need for more power than ever before. Could nuclear fission be the solution they’ve been searching for?

Watch more Focal Point! | https://bit.ly/2J9b9LC

Continue reading “NASA’s New Space Engine Is Powered by Nuclear Fission” »