Toggle light / dark theme

New results from the CMS Collaboration at CERN’s Large Hadron Collider demonstrate for the first time that top quarks are produced in nucleus-nucleus collisions. The results open the path to study in a new and unique way the extreme state of matter that is thought to have existed shortly after the Big Bang.

First observed in proton-antiproton collisions at the Tevatron collider 25 years ago, this particle is also a unique and potentially very powerful tool to understand the inner content of nuclear matter.

Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers. Their paper, entitled “Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits,” appears in the December issue of PRX Quantum, a journal of the American Physical Society.

“Quantum physics is the fundamental theory of nature which leads to formation of molecules and the resulting matter around us,” said Ghaemi, assistant professor in CCNY’s Division of Science. “It is already known that when we have a macroscopic number of quantum particles, such as electrons in the metal, which interact with each other, novel phenomena such as superconductivity emerge.”

However, until now, according to Ghaemi, tools to study systems with large numbers of interacting quantum particles and their novel properties have been extremely limited.

Ira Pastor, ideaXme life sciences ambassador and CEO Bioquark interviews Dr. Michelle Francl the Frank B. Mallory Professor of Chemistry, at Bryn Mawr College, and an adjunct scholar of the Vatican Observatory.

Ira Pastor comments:

Today, we have another fascinating guest working at the intersection of cutting edge science and spirituality.

Dr. Michelle Francl is the Frank B. Mallory Professor of Chemistry, at Bryn Mawr College, a distinguished women’s college in the suburbs of Philadephia, as well as an adjunct scholar of the Vatican Observatory.

A group of researchers led by Sir Andre Geim and Dr. Alexey Berdyugin at The University of Manchester have discovered and characterized a new family of quasiparticles named ‘Brown-Zak fermions’ in graphene-based superlattices.

The team achieved this breakthrough by aligning the atomic lattice of a layer to that of an insulating boron nitride sheet, dramatically changing the properties of the graphene sheet.

The study follows years of successive advances in graphene-boron nitride superlattices which allowed the observation of a fractal pattern known as the Hofstadter’s butterfly—and today (Friday, November 13) the researchers report another highly surprising behavior of particles in such structures under applied magnetic field.

In 1934, theoretical physicist Eugene Wigner proposed a new type of crystal.

If the density of negatively charged electrons could be maintained below a certain level, the subatomic particles could be held in a repeating pattern to create a crystal of electrons; this idea came to be known as a Wigner crystal.

The first time a Wigner crystal was experimentally observed was in 1979, when researchers measured an electron-liquid to electron-crystal phase transition using helium; since then, such crystals have been detected numerous times.

Most materials used for optical lighting applications need to produce a uniform illumination and require high mechanical and hydrophobic properties. However, they are rarely eco-friendly. Herein, a bio-based, polymer matrix-free, luminescent, and hydrophobic film with excellent mechanical properties for optical lighting purposes is demonstrated. A template is prepared by turning a wood veneer into porous scaffold from which most of the lignin and half of the hemicelluloses are removed. The infiltration of quantum dots (CdSe/ZnS) into the porous template prior to densification resulted in almost uniform luminescence (isotropic light scattering) and could be extended to various quantum dot particles, generating different light colors. In a subsequent step, the luminescent wood film is coated with hexadecyltrimethoxysilane (HDTMS) via chemical vapor deposition. The presence of the quantum dots coupled with the HDTMS coating renders the film hydrophobic (water contact angle ≈ 140°). This top-down process strongly eliminates lumen cavities and preserves the orientation of the original cellulose fibrils to create luminescent and polymer matrix-free films with high modulus and strength in the direction of fibers. The proposed optical lighting material could be attractive for interior designs (e.g., lamps and laminated cover panels), photonics, and laser devices.

An international team of scientists have unveiled the world’s first production of a purified beam of neutron-rich, radioactive tantalum ions. This development could now allow for lab-based experiments on exploding stars helping scientists to answer long-held questions such as “where does gold come from?”

In a paper published in Physical Review Letters, the University of Surrey together with its partners detail how they used a new isotope-separation facility, called KISS, which is developed and operated by the Wako Nuclear Science Centre (WNSC) in the High Energy Accelerator Research Organization (KEK), Japan, to make beams of heavy isotopes.

The chemical element of tantalum is extremely difficult to vaporize, so the team had to capture radioactive tantalum atoms in high-pressure argon gas, ionizing the atoms with precisely tuned lasers. A single isotope of radioactive tantalum could then be selected for detailed investigation.