Toggle light / dark theme

Have you ever seen the popular movie called The Matrix? In it, the main character Neo realizes that he and everyone else he had ever known had been living in a computer-simulated reality. But even after taking the red pill and waking up from his virtual world, how can he be so sure that this new reality is the real one? Could it be that this new reality of his is also a simulation? In fact, how can anyone tell the difference between simulated reality and a non-simulated one? The short answer is, we cannot. Today we are looking at the simulation hypothesis which suggests that we all might be living in a simulation designed by an advanced civilization with computing power far superior to ours.

The simulation hypothesis was popularized by Nick Bostrum, a philosopher at the University of Oxford, in 2003. He proposed that members of an advanced civilization with enormous computing power may run simulations of their ancestors. Perhaps to learn about their culture and history. If this is the case he reasoned, then they may have run many simulations making a vast majority of minds simulated rather than original. So, there is a high chance that you and everyone you know might be just a simulation. Do not buy it? There is more!

According to Elon Musk, if we look at games just a few decades ago like Pong, it consisted of only two rectangles and a dot. But today, games have become very realistic with 3D modeling and are only improving further. So, with virtual reality and other advancements, it seems likely that we will be able to simulate every detail of our minds and bodies very accurately in a few thousand years if we don’t go extinct by then. So games will become indistinguishable from reality with an enormous number of these games. And if this is the case he argues, “then the odds that we are in base reality are 1 in billions”.

There are other reasons to think we might be in a simulation. For example, the more we learn about the universe, the more it appears to be based on mathematical laws. Max Tegmark, a cosmologist at MIT argues that our universe is exactly like a computer game which is defined by mathematical laws. So for him, we may be just characters in a computer game discovering the rules of our own universe.

With our current understanding of the universe, it seems impossible to simulate the entire universe given a potentially infinite number of things within it. But would we even need to? All we need to simulate is the actual minds that are occupying the simulated reality and their immediate surroundings. For example, when playing a game, new environments render as the player approaches them. There is no need for those environments to exist prior to the character approaching them since this can save a lot of computing power. This can be especially true of simulations that are as big as our universe. So, it could be argued that distant galaxies, atoms, and anything that we are actively not observing simply does not exist. These things render into existence once someone starts to observe them.

On his podcast StarTalk, astrophysicist Neil deGrasse Tyson and comedian Chuck Nice discussed the simulation hypothesis. Nice suggested that maybe there is a finite limit to the speed of light because if there wasn’t, we would be able to reach other galaxies very quickly. Tyson was surprised by this statement and further added that the programmer put in this limit to make sure we cannot get too far away places before the programmer has the time to program them.

Studying The Atoms Of Perception, Memory, Behavior and Consciousness — Dr. Christof Koch, Ph.D. — Chief Scientist, MindScope Program, Allen Institute.


Dr. Christof Koch, Ph.D. (https://alleninstitute.org/what-we-do/brain-science/about/te…stof-koch/) is Chief Scientist of the MindScope Program at the Allen Institute for Brain Science, originally funded by a donation of more than $500 million from Microsoft founder and philanthropist Paul G. Allen.

With his B.S. and M.S. in physics from the University of Tübingen in Germany and his Ph.D. from the Max-Planck Institute for Biological Cybernetics, Dr. Koch spent four years as a postdoctoral fellow in the Artificial Intelligence Laboratory and the Brain and Cognitive Sciences Department at MIT, and from 1987 until 2,013 was a professor at Caltech, from his initial appointment as Assistant Professor, Division of Biology and Division of Engineering and Applied Sciences, to his final position as Lois and Victor Troendle Professor of Cognitive & Behavioral Biology.

Dr. Koch joined the Allen Institute for Brain Science as Chief Scientific Officer in 2011 and became it’s President in 2015.

Dr. Koch’s passion are neurons, or what he refers to as the atoms of perception, memory, behavior and consciousness, including their diverse shapes, electrical behaviors, and their computational function within the mammalian brain, in particular in neocortex, and he leads the Allen Institute for Brain Science effort to identify all the different types of neurons in the brains of mice and humans – known as their cell census effort.

Spintronic devices, a class of architectures that can store or transfer information by leveraging the intrinsic spin of electrons, have been found to be highly promising, both in terms of speed and efficiency. So far, however, the development of these devices has been hindered by the poor compatibility between semiconducting materials and ferromagnetic sources of spin, which underpin their operation.

In fact, while some semiconductors can generate electrical currents from transverse spin currents and vice versa, reliably controlling this spin-charge conversion has so far proved to be highly challenging. In recent years, some material scientists and engineers have thus been investigating the potential of fabricating spintronic devices using ferroelectric Rashba semiconductors, a class of materials with several advantageous properties, such as semiconductivity, large spin-orbit coupling and non-volatility.

A team of researchers at Politecnico di Milano, University Grenoble Alpes and other institutes worldwide have recently demonstrated the non-volatile control of the spin-to-charge conversion in telluride, a known Rashba semiconductor, at room temperature. Their paper, published in Nature Electronics, could have important implications for the future development of spintronic devices.

An international team of scientists from Austria and Germany has launched a new paradigm in magnetism and superconductivity, putting effects of curvature, topology, and 3D geometry into the spotlight of next-decade research. The results are published in Advanced Materials.

Traditionally, the primary field in which curvature plays a pivotal role is the theory of general relativity. In recent years, however, the impact of curvilinear geometry has entered various disciplines, ranging from solid-state physics to soft-matter physics to chemistry and biology; and giving rise to a plethora of emerging domains, such as curvilinear cell biology, semiconductors, superfluidity, optics, plasmonics and 2D van der Waals materials. In modern magnetism, superconductivity and , extending nanostructures into the has become a major research avenue because of geometry-, curvature-and topology-induced phenomena. This approach provides a means to improve conventional functionalities and to launch novel functionalities by tailoring the curvature and 3D shape.

“In recent years, there have appeared experimental and theoretical works dealing with curvilinear and three-dimensional superconducting and (anti-)ferromagnetic nano-architectures. However, these studies originate from different scientific communities, resulting in the lack of knowledge transfer between such fundamental areas of condensed matter physics as magnetism and superconductivity,” says Oleksandr Dobrovolskiy, head of the SuperSpin Lab at the University of Vienna. “In our group, we lead projects in both these topical areas and it was the aim of our perspective article to build a ‘bridge’ between the magnetism and superconductivity communities, drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities upon solid-state systems.”

It consists of a 35-nanometer-wide film made out of an organic semiconductor sandwiched between two mirrors that create a microcavity, which keeps light trapped inside. When a bright “pump” laser is shone onto the device, photons from its beam couple with the material to create a conglomeration of quasiparticles known as a Bose-Einstein condensate, a collection of particles that behaves like a single atom.

A second weaker laser can be used to switch the condensate between two levels with different numbers of quasiparticles. The level with more particles represents the “on” state of a transistor, while the one with fewer represents the “off” state.

What’s most promising about the new device, described in a paper in Nature, is that it can be switched between its two states a trillion times a second, which is somewhere between 100 and 1,000 times faster than today’s leading commercial transistors. It can also be switched by just a single photon, which means it requires far less energy to drive than a transistor.

The research team lead by professor Pan Jian-Wei has upgraded their photonic quantum computer, demonstrating in a new published study phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. According to the researchers, the Jiuzhang 2.0 Photonic Quantum Computer (九章二号) is 10 billion times faster than its earlier version. The study “Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light” was published in the journal Physical Review.

Credit: China Media Group(CMG)/China Central Television (CCTV)

The magnetic and particle environment around Mercury was sampled by BepiColombo for the first time during the mission’s close flyby of the planet at 199 km on 1–2 October 2,021 while the huge gravitational pull of the planet was felt by its accelerometers.

The magnetic and accelerometer data have been converted into sound files and presented here for the first time. They capture the ‘sound’ of the solar wind as it bombards a planet close to the Sun, the flexing of the spacecraft as it responded to the change in temperature as it flew from the night to dayside of the planet, and even the sound of a science instrument rotating to its ‘park’ position.

This was described in his 2019 paper, “The mass-energy-information equivalence principle,” which extends Einstein’s theories about the interrelationship of matter and energy to data itself. Consistent with IT, Vopson’s study was based on the principle that information is physical and that all physical systems can register information. He concluded that the mass of an individual bit of information at room temperature (300K) is 3.19 × 10-38 kg (8.598 × 10-38 lbs).

Taking Shannon’s method further, Vopson determined that every elementary particle in the observable Universe has the equivalent of 1.509 bits of encoded information. “It is the first time this approach has been taken in measuring the information content of the universe, and it provides a clear numerical prediction,” he said. “Even if not entirely accurate, the numerical prediction offers a potential avenue toward experimental testing.”

In 1,993 deep underground at Los Alamos National Laboratory in New Mexico, a few flashes of light inside a bus-size tank of oil kicked off a detective story that is yet to reach its conclusion.

The Liquid Scintillator Neutrino Detector (LSND) was searching for bursts of radiation created by neutrinos, the lightest and most elusive of all known elementary particles. “Much to our amazement, that’s what we saw,” said Bill Louis, one of the experiment’s leaders.

The problem was that they saw too many. Theorists had postulated that neutrinos might oscillate between types as they fly along — a hypothesis that explained various astronomical observations. LSND had set out to test this idea by aiming a beam of muon neutrinos, one of the three known types, toward the oil tank, and counting the number of electron neutrinos that arrived there. Yet Louis and his team detected far more electron neutrinos arriving in the tank than the simple theory of neutrino oscillations predicted.