Menu

Blog

Archive for the ‘particle physics’ category: Page 336

Jun 11, 2021

Researchers observe sound-light pulses in 2D materials for the first time

Posted by in categories: computing, engineering, particle physics, quantum physics

Using an ultrafast transmission electron microscope, researchers from the Technion—Israel Institute of Technology have, for the first time, recorded the propagation of combined sound and light waves in atomically thin materials.

The experiments were performed in the Robert and Ruth Magid Electron Beam Quantum Dynamics Laboratory headed by Professor Ido Kaminer, of the Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and the Solid State Institute.

Continue reading “Researchers observe sound-light pulses in 2D materials for the first time” »

Jun 9, 2021

MIT Engineers Have Discovered a Completely New Way of Generating Electricity

Posted by in categories: nanotechnology, particle physics

MIT engineers have discovered a way to generate electricity using tiny carbon particles that can create an electric current simply by interacting with an organic solvent in which they’re floating. The particles are made from crushed carbon nanotubes (blue) coated with a Teflon-like polymer (green). Credit: Jose-Luis Olivares, MIT. Based on a figure courtesy of the researchers.

A new material made from carbon nanotubes can generate electricity by scavenging energy from its environment.

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

Jun 8, 2021

Subatomic particle seen changing to antiparticle and back

Posted by in category: particle physics

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again, in a new discovery revealed today.

The extraordinarily precise measurement was made by UK researchers using the Large Hadron Collider beauty (LHCb) experiment at CERN.

It has provided the first evidence that mesons can change into their antiparticle and back again.

Jun 7, 2021

Stars Made of Antimatter Might Be Lurking in the Universe

Posted by in categories: particle physics, space

Circumstantial evidence could point to a mind-blowing solution to an antimatter mystery—or to the need for better space-based particle physics experiments.

Jun 7, 2021

A framework to simulate the same physics using two different Hamiltonians

Posted by in categories: particle physics, quantum physics

Researchers at Okinawa Institute of Science and Technology Graduate University in Japan have recently been investigating situations in which two distinct Hamiltonians could be used to simulate the same physical phenomena. A Hamiltonian is a function or model used to describe a dynamic system, such as the motion of particles.

In a paper published in Physical Review Letters, the researchers introduced a framework that could prove useful for simulating the same physics with two distinct Hamiltonians. In addition, they provide an example of an analog simulation and show how one could build an alternative version of a digital quantum simulator.

“The idea came about when I was looking at the dynamical generation of entanglement in spin chains,” Karol Gietka, one of the researchers who carried out the study, told Phys.org. “I noticed that the behavior of entanglement as a function of time in a certain model very much resembles entanglement behavior in the paradigmatic one-axis twisting model. Initially, I thought that one could map one system onto another one, but it was not possible as the Hamiltonians of the two systems were very different, which really confused me.”

Jun 7, 2021

An atom chip interferometer that could detect quantum gravity

Posted by in categories: computing, particle physics, quantum physics

Physicists in Israel have created a quantum interferometer on an atom chip. This device can be used to explore the fundamentals of quantum theory by studying the interference pattern between two beams of atoms. University of Groningen physicist, Anupam Mazumdar, describes how the device could be adapted to use mesoscopic particles instead of atoms. This modification would allow for expanded applications. A description of the device, and theoretical considerations concerning its application by Mazumdar, were published on 28 May in the journal Science Advances.

The device, created by scientists from the Ben-Gurion University of the Negev, is a so-called Stern Gerlach interferometer, which was first proposed 100 years ago by German physicists Otto Stern and Walter Gerlach. Their original aim of creating an interferometer with freely propagating atoms exposed to gradients from macroscopic magnets has not been practically realized until now. “Such experiments have been done using photons, but never with atoms,” explains Anupam Mazumdar, Professor of Theoretical Physics at the University of Groningen and one of the co-authors of the article in Science Advances.

The Israeli scientists, led by Professor Ron Folman, created an interferometer on an , which can confine and/or manipulate atoms. A beam of rubidium atoms is levitated over the chip using magnets. Magnetic gradients are used to split the beam according to the spin values of the individual atoms. Spin is a magnetic moment that can have two values, either up or down. The spin-up and spin-down atoms are separated by a magnetic gradient. Subsequently, the two divergent beams are brought together again and recombined. The spin values are then measured, and an interference pattern is formed. Spin is a quantum phenomenon, and throughout this interferometer, the opposing spins are entangled. This makes the interferometer sensitive to other quantum phenomena.

Jun 7, 2021

A new material made from carbon nanotubes can generate electricity

Posted by in categories: chemistry, nanotechnology, particle physics, robotics/AI

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an , draws electrons out of the particles, generating a current that could be used to drive or to power micro-or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

Jun 7, 2021

High-density hard drive packed with graphene stores 10 times the data

Posted by in categories: computing, particle physics, space

Researchers have found that graphene-enhanced hard drives can store data at ten times the density of existing HDDs.


By leveraging the wonder material graphene, a group at the University of Cambridge is claiming an advance in data storage that resembles more of a leap than a step forward. The new design unlocks higher operating temperatures for hard disk drives (HDDs) and with it, unprecedented data density, which the team says represents a ten-fold increase on current technologies.

In a HDD, data is written onto fast-spinning platters by a moving magnetic head. Special layers called carbon-based overcoats (COCs) protect these platters from mechanical damage and corrosion during operation, though these can only perform within a certain temperature range and also take up a lot of space.

Continue reading “High-density hard drive packed with graphene stores 10 times the data” »

Jun 7, 2021

Smashing gold with finesse: Shockless compression experiments establish new pressure scales

Posted by in categories: chemistry, computing, particle physics, quantum physics

To test the Standard Model of particle physics, scientists often collide particles using gigantic underground rings. In a similar fashion, high-pressure physicists compress materials to ever greater pressures to further test the quantum theory of condensed matter and challenge predictions made using the most powerful computers.

Pressures exceeding 1 million atmospheres are capable of dramatically deforming atomic electronic clouds and alter how atoms are packed together. This leads to new chemical bonding and has revealed extraordinary behaviors such as helium rain, the transformation of sodium into a transparent metal, the emergence of superionic water ice and the transformation of hydrogen into a metallic fluid.

With new techniques constantly advancing the frontier of high– physics, terapascal (TPa) pressures that were once inaccessible can now be achieved in the laboratory using static or dynamic compression (1 TPa is equivalent to approximately 10 million atmospheres).

Jun 3, 2021

There’s No Speed Limit in a Superfluid Universe. Now We Know Why

Posted by in category: particle physics

In the cold, dense medium of a helium-3 superfluid, scientists recently made an unexpected discovery. A foreign object travelling through the medium could exceed a critical speed limit without breaking the fragile superfluid itself.

As this contradicts our understanding of superfluidity, it presented quite a puzzle — but now, by recreating and studying the phenomenon, physicists have figured out how it happens. Particles in the superfluid stick to the object, shielding it from interacting with the bulk superfluid, thus preventing the superfluid’s breakdown.

“Superfluid helium-3 feels like a vacuum to a rod moving through it, although it is a relatively dense liquid. There is no resistance, none at all,” said physicist Samuli Autti of Lancaster University in the UK. “I find this very intriguing.”