Menu

Blog

Archive for the ‘particle physics’ category: Page 327

Jul 27, 2021

Laser pincers generate antimatter

Posted by in categories: climatology, cosmology, particle physics

Some of the greatest mysteries in cosmology revolve around antimatter, and it’s hard to study because it’s rare and hard to produce in the lab. Now a team of physicists has outlined a relatively simple new way to create antimatter, by firing two lasers at each other to reproduce the conditions near a neutron star, converting light into matter and antimatter.

In principle, antimatter sounds simple – it’s just like regular matter, except its particles have the opposite charge. That basic difference has some major implications though: if matter and antimatter should ever meet, they will annihilate each other in a burst of energy. In fact, that should have destroyed the universe billions of years ago, but obviously that didn’t happen. So how did matter come to dominate? What tipped the scales in its favor? Or, where did all the antimatter go?

Unfortunately, antimatter’s scarcity and instability make it difficult to study to help answer those questions. It’s naturally produced under extreme conditions, such as lightning strikes, or near black holes and neutron stars, and artificially in huge facilities like the Large Hadron Collider.

Jul 27, 2021

This is the first mini–particle accelerator to power a laser

Posted by in category: particle physics

For 2 decades, physicists have strived to miniaturize particle accelerators—the huge machines that serve as atom smashers and x-ray sources. That effort just took a big step, as physicists in China used a small “plasma wakefield accelerator” to power a type of laser called a free-electron laser (FEL). The 12-meter-long FEL isn’t nearly as good as its kilometers-long predecessors. Still, other researchers say the experiment marks a major advance in miniaccelerators.


Experiment demonstrates improvement in particle beams from plasma-based accelerators.

Jul 26, 2021

Researchers are testing concrete that could charge your EV while you drive

Posted by in categories: particle physics, sustainability, transportation

Roads that can charge electric cars or buses while you drive aren’t a new concept, but so far the technology has been relatively expensive and inefficient. However, Indiana’s Department of Transport (INDOT) has announced that it’s testing a new type of cement with embedded magnetized particles that could one day provide efficient, high-speed charging at “standard roadbuilding costs,” Autoblog has reported.

With funding from the National Science Foundation (NSF), INDOT has teamed with Purdue University and German company Magment on the project. They’ll carry out the research in three phases, first testing if the magnetized cement (called “magment,” naturally) will work in the lab, then trying it out on a quarter-mile section of road.

In a brochure, Magment said its product delivers “record-breaking wireless transmission efficiency [at] up to 95 percent,” adding that it can be built at “standard road-building installation costs” and that it’s “robust and vandalism-proof.” The company also notes that slabs with the embedded ferrite particles could be built locally, presumably under license.

Jul 26, 2021

Acoustic Tweezers Can Pick Objects Up With Sound Waves – Without Any Physical Contact

Posted by in categories: biological, chemistry, particle physics

Hemispherical array of ultrasound transducers lifts objects off reflective surfaces.

Researchers from Tokyo Metropolitan University have developed a new technology which allows non-contact manipulation of small objects using sound waves. They used a hemispherical array of ultrasound transducers to generate a 3D acoustic fields which stably trapped and lifted a small polystyrene ball from a reflective surface. Although their technique employs a method similar to laser trapping in biology, adaptable to a wider range of particle sizes and materials.

Continue reading “Acoustic Tweezers Can Pick Objects Up With Sound Waves – Without Any Physical Contact” »

Jul 26, 2021

Qubit Spin Ice: Emergent Magnetic Monopoles Isolated Using Quantum-Annealing Computer

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Project offers new step toward study of emergence, ‘materials by design,’ and future nanomagnets.

Using a D-Wave quantum-annealing computer as a testbed, scientists at Los Alamos National Laboratory have shown that it is possible to isolate so-called emergent magnetic monopoles, a class of quasiparticles, creating a new approach to developing “materials by design.”

“We wanted to study emergent magnetic monopoles by exploiting the collective dynamics of qubits,” said Cristiano Nisoli, a lead Los Alamos author of the study. “Magnetic monopoles, as elementary particles with only one magnetic pole, have been hypothesized by many, and famously by Dirac, but have proved elusive so far.”

Jul 25, 2021

Nanocatalytic Spontaneous Ignition and Self-Supporting Room-Temperature Combustion

Posted by in categories: nanotechnology, particle physics

Circa 2005 o,.o.


Stable and reproducible spontaneous self-ignition and self-supporting combustion have been achieved at room temperature by exposing nanometer-sized catalytic particles to methanol/air or ethanol/air gas mixtures. Without any external ignition, structurally supported platinum nanoparticles instantaneously react with the gas mixtures. The reaction releases heat and produces CO2 and water. Such reactions starting at ambient temperature have reached both high (]600 °C) and low (a few tenths of a degree above room temperature) reaction temperatures. The reaction is controlled by varying the fuel/air mixture. Catalytic activity could be dramatically changed by reducing particle size and changing particle morphology.

Jul 25, 2021

Remarkable Photo of a Single Atom Wins Science Photography Contest

Posted by in categories: particle physics, science

Ever wonder what an atom looks like?


A remarkable photography of a single atom by Ph.D. student David Nadlinger has won the EPSRC science photography contest. The atom photo was captured using a long exposure while the atom emitted light from a laser in a vacuum chamber.

Jul 24, 2021

Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles

Posted by in category: particle physics

Zeolitic imidazolate frameworks are promising as high-capacity iodine adsorbents. Here the authors image the gaseous I2 adsorption on single ZIF-90 particles, clarifying the inter-particle heterogeneity in adsorption reactivity and performance improvement after introduction of linker defects.

Jul 24, 2021

Quantum control of a nanoparticle optically levitated in cryogenic free space

Posted by in categories: nanotechnology, particle physics, quantum physics

Quantum control of an optically levitated nanoparticle with a mass of just one femtogram is demonstrated in a cryogenic environment by feedback-cooling the motion of the particle to the quantum ground state.

Jul 23, 2021

Physicists Show That a Quantum Particle Made of Light and Matter Can Be Dragged by a Current of Electrons

Posted by in categories: nanotechnology, particle physics, quantum physics

A pair of studies in Nature show that a quasiparticle, known as a plasmon polariton, can be pulled with and against a flow of electrons, a finding that could lead to more efficient ways of manipulating light at the nanoscale.