Toggle light / dark theme

The atoms arranged in lines and sheets reached about 1.2 nanokelvin, more than 2 billion times colder than interstellar space. For the atoms in three-dimensional arrangements, the situation is so complex that the researchers are still figuring out the best way to measure the temperature.

The atoms in the experiment belong to a larger group called fermions and were “the coldest fermions in the universe”, says Hazzard. “Thinking about experimenting on this 10 years ago, it looked like a theorist’s dream,” he says.

Physicists have long been interested in how atoms interact in exotic magnets like this because they suspect that similar interactions happen in high-temperature superconductors – materials that perfectly conduct electricity. By better understanding what happens, they could build better superconductors.

A team of Japanese and US physicists has pushed thousands of Ytterbium atoms to just within a billionth of a degree above absolute zero to understand how matter behaves at these extreme temperatures. The approach treats the atoms as fermions, the type of particles like electrons and protons, that cannot end up in the so-called fifth state of matter at those extreme temperatures: a Bose-Einstein Condensate.

When fermions are actually cooled down, they do exhibit quantum properties in a way that we can’t simulate even with the most powerful supercomputer. These extremely cold atoms are placed in a lattice and they simulate a “Hubbard model” which is used to study the magnetic and superconductive behavior of materials, in particular the collective motion of electrons through them.

The symmetry of these models is known as the special unitary group, or, SU, and depends on the possible spin state. In the case of Ytterbium, that number is 6. Calculating the behavior of just 12 particles in a SU Hubbard model can’t be done with computers. However, as reported in Nature Physics, the team used laser cooling to reduce the temperature of 300,000 atoms to a value almost three billion times colder than the temperature of outer space.

Be it magnets or superconductors, materials are known for their various properties. However, these properties may change spontaneously under extreme conditions. Researchers at the Technische Universität Dresden (TUD) and the Technische Universität München (TUM) have discovered an entirely new type of these phase transitions. They display the phenomenon of quantum entanglement involving many atoms, which previously has only been observed in the realm of a few atoms. The results were recently published in the scientific journal Nature.

New fur for the quantum cat

In physics, Schroedinger’s cat is an allegory for two of the most awe-inspiring effects of quantum mechanics: entanglement and superposition. Researchers from Dresden and Munich have now observed these behaviors on a much larger scale than that of the smallest of particles. Until now, materials that display properties, like magnetism, have been known to have so-called domains—islands in which the materials properties are homogeneously either of one or a different kind (imagine them being either black or white, for example).

Protons are particles that exist in the nucleus of all atoms, with their number defining the elements themselves. Protons, however, are not fundamental particles. Rather, they are composite particles made up of smaller subatomic particles, namely two “up quarks” and one “down quark” bound together by force-carrying particles (bosons) called “gluons.”

This structure isn’t certain, however, and quantum physics suggests that along with these three quarks, other particles should be “popping” into and out of existence at all times, affecting the mass of the proton. This includes other quarks and even quark-antiquark pairs.

Indeed, the deeper scientists have probed the structure of the proton with high-energy particle collisions, the more complicated the situation has become. As a result, for around four decades, physicists have speculated that protons may host a heavier form of quark than up and down quarks called “intrinsic charm quarks,” but confirmation of this has been elusive.

⭕ Watch the full episode on EpochTV 👉https://ept.ms/UltimateWeapon_FULL

🔔 A Documentary by The Epoch Times, reveals the truth that has been hidden from the American people.👉https://ept.ms/3cTR1zF

🔵 Enjoy 50% OFF 👉 https://ept.ms/3OAQfFI

⭕️ Sign up for our NEWSLETTER and stay in touch👉https://www.ntd.com/newsletter.html.

Researchers from North Carolina State University used computational analysis to predict how optical properties of semiconductor material zinc selenide (ZnSe) change when doped with halogen elements, and found the predictions were confirmed by experimental results. Their method could speed the process of identifying and creating materials useful in quantum applications.

Creating semiconductors with desirable properties means taking advantage of point defects—sites within a material where an atom may be missing, or where there are impurities. By manipulating these sites in the material, often by adding different elements (a process referred to as “doping”), designers can elicit different properties.

“Defects are unavoidable, even in ‘pure’ ,” says Doug Irving, University Faculty Scholar and professor of materials science and engineering at NC State. “We want to interface with those spaces via doping to change certain properties of a material. But figuring out which elements to use in doping is time and labor intensive. If we could use a to predict these outcomes it would allow material engineers to focus on elements with the best potential.”

To smash atoms with unimaginable power.

Cern’s Large Hadron Collider (LHC) is back online after a three-year technical shutdown period. The expert scientists at the famous research facility ran the powerful accelerator at the end of April, and Run 3 physics started in early July. The entire process ran at the highest energy level ever achieved in an accelerator.

The LHC experiments are expected to collect so much data on nature at its smallest levels that it is measured in petabytes.


(LHC) is the world’s largest and most powerful particle accelerator. It consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way.