Toggle light / dark theme

A Quantum of Solace: Resolving a Mathematical Puzzle in Quarks and Gluons in Nuclear Matter

Scientists have taken a significant step forward in the study of the properties of quarks and gluons, the particles that make up atomic nuclei, by resolving a long-standing issue with a theoretical calculation method known as “axial gauge.” MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

Scientists Just Showed How to Make a Quantum Computer Using Sound Waves

One thing all quantum computers have in common is the fact that they manipulate information encoded in quantum states. But that’s where the similarities end, because those quantum states can be induced in everything from superconducting circuits to trapped ions, ultra-cooled atoms, photons, and even silicon chips.

While some of these approaches have attracted more investment than others, we’re still a long way from the industry settling on a common platform. And in the world of academic research, experimentation still abounds.

Now, a team from the University of Chicago has taken crucial first steps towards building a quantum computer that can encode information in phonons, the fundamental quantum units that make up sound waves in much the same way that photons make up light beams.

A new study shows how ‘splitting’ sound takes us one step closer to a new type of quantum computer

Scientists have demonstrated entanglement and two-particle interference with phonon using an acoustic beam splitter.

Phonons are to sound what photons are to light. Photons are tiny packets of energy for light or electromagnetic waves. Similarly, phonons are packets of energy for sound waves. Each phonon represents the vibration of millions of atoms within a material.

Both photons and phonons are of central interest to quantum computing research, which exploits the properties of these quantum particles. However, phonons have proven challenging to study due to their susceptibility to noise and issues with scalability and detection.

Research takes first steps towards realizing mechanical qubits

Quantum information (QI) processing may be the next game changer in the evolution of technology, by providing unprecedented computational capabilities, security and detection sensitivities. Qubits, the basic hardware element for quantum information, are the building block for quantum computers and quantum information processing, but there is still much debate on which types of qubits are actually the best.

Research and development in this field is growing at astonishing paces to see which system or platform outruns the other. To mention a few, platforms as diverse as superconducting Josephson junctions, trapped ions, topological qubits, ultra-cold neutral atoms, or even diamond vacancies constitute the zoo of possibilities to make qubits.

So far, only a handful of platforms have been demonstrated to have the potential for quantum computing, marking the checklist of high-fidelity controlled gates, easy qubit-qubit coupling, and good isolation from the environment, which means sufficiently long-lived coherence.