Menu

Blog

Archive for the ‘particle physics’ category: Page 214

Aug 4, 2022

Quantum computer can simulate infinitely many chaotic particles

Posted by in categories: computing, particle physics, quantum physics

Using just a handful of quantum bits, researchers have used a quantum computer to simulate an infinite line of electron-like particles. The technique could be used to better understand the behaviour of molecules in materials.

Aug 4, 2022

High-resolution laser resonances of antiprotonic helium in superfluid 4He

Posted by in category: particle physics

😳!


The spectral lines of antiprotonic helium atoms are shown to retain their sub-gigahertz linewidth upon submersion in a bath of superfluid helium, enabling the hyperfine structure to be resolved.

Aug 4, 2022

Building decarbonization: How electric heat pumps could help reduce emissions today and going forward

Posted by in categories: nanotechnology, particle physics, solar power, sustainability

The electrification of heating systems could play a significant role in building decarbonization. Heat pumps are emerging as a solution.


Iranian scientists have demonstrated a multi-layer silicon nanoparticle (SNP) solar cell based on nanoparticles that are densely stacked inside a dielectric medium. They considered different SNP structures and configurations to tailor these particles as a p–n junction cell.

Aug 4, 2022

Ultra-thin silicon nanoparticle solar cell with 11% efficiency

Posted by in categories: nanotechnology, particle physics, solar power, sustainability

“This is because SNPs are assumed to be the main absorber in the cell. Thus, any distance between them reduces the absorption of incident photons,” the group said.

They considered different SNP structures and configurations to tailor these particles as a p–n junction cell. They said this kind of cell could achieve a theoretical efficiency of around 11%.

Aug 4, 2022

Scientists discover light as ‘glue’ in a loosely linked molecule

Posted by in category: particle physics

Aug 4, 2022

Exceeding 100 percent quantum efficiency in the photocurrent of a hybrid inorganic-organic semiconductor

Posted by in categories: particle physics, quantum physics, solar power, sustainability

Tiny crystals, known as quantum dots, have enabled an international team to achieve a quantum efficiency exceeding 100 percent in the photocurrent generated in a hybrid inorganic-organic semiconductor.

Perovskites are exciting semiconductors for light-harvesting applications and have already shown some impressive performances in solar cells. But improvements in photo-conversion efficiency are necessary to take this technology to a broader market.

Light comes in packets of energy known as photons. When a semiconductor absorbs a photon, the is transferred to a negatively charged electron and its positively charged counterpart, known as a hole. An can sweep these particles in , thereby allowing a current to flow. This is the basic operation of a solar cell. It might sound simple, but optimizing the quantum efficiency, or getting as many from the incoming photons as possible, has been a long-standing goal.

Aug 4, 2022

Legitimate Cold Fusion Exists | Muon-Catalyzed Fusion

Posted by in category: particle physics

Cold Fusion is possible by replacing Hydrogen Electrons with Muons.
- Takes 5GeV to create a Muon, they only live for 2.2 microseconds.
- Muons provide a catalyst for 150 fusion events, before sticking to Helium Atom.
- Net fusion output is 2.7GeV per 5GeV Muon.

https

Aug 3, 2022

Time is the increase of order, not disorder

Posted by in categories: cosmology, mathematics, particle physics

The received view in physics is that the direction of time is provided by the second law of thermodynamics, according to which the passage of time is measured by ever-increasing disorder in the universe. This view, Julian Barbour argues, is wrong. If we reject Newton’s faulty assumptions about the existence of absolute space and time, Newtonian dynamics can be shown to provide a very different arrow of time. Its direction, according to this theory, is given by the increase in the complexity and order of a system of particles, exactly the opposite of what the received view about time suggests.

Two of the most established beliefs of contemporary cosmology are that the universe is expanding and that the direction of the arrow of time in the universe is defined by ever-increasing disorder (entropy), as described by the second law of thermodynamics. But both of these beliefs rest on shaky ground. In saying that the universe is expanding, physicists implicitly assume its size is measured by a rod that exists outside the universe, providing an absolute scale. It’s the last vestige of Newton’s absolute space and should have no place in modern cosmology. And in claiming that entropy is what gives time its arrow, physicists uncritically apply the laws of thermodynamics, originally discovered through the study of steam engines, to the universe as a whole. That too needs to be questioned.

Continue reading “Time is the increase of order, not disorder” »

Aug 3, 2022

Quantum Computers can Look Beyond Zeros and Ones! Research Reveals

Posted by in categories: particle physics, quantum physics, robotics/AI

View insights.


The University of Innsbruck, Austria, realized a quantum computer that breaks out of this paradigm and unlocks additional computational resources, hidden in almost all of today’s quantum devices. Computers are well-known for operating with binary information, or zeros and ones, which has led to computers powering so much. This new approach results in more computational power with fewer quantum particles.

Quantum computers work with more than zero and one and digital computers work with zeros and ones, also called binary information. Quantum computers are also designed with binary information processing in mind. In fact, it was so successful that computers now power everything from coffee makers to self-driving cars, and it’s hard to imagine life without them. Restricting researchers to binary systems prevent these devices from living up to their true potential.

Continue reading “Quantum Computers can Look Beyond Zeros and Ones! Research Reveals” »

Aug 3, 2022

Neural networks and ‘ghost’ electrons accurately reconstruct behavior of quantum systems

Posted by in categories: particle physics, quantum physics, robotics/AI

Physicists are (temporarily) augmenting reality to crack the code of quantum systems.

Predicting the properties of a molecule or material requires calculating the collective behavior of its . Such predictions could one day help researchers develop new pharmaceuticals or design materials with sought-after properties such as superconductivity. The problem is that electrons can become “quantum mechanically” entangled with one another, meaning they can no longer be treated individually. The entangled web of connections becomes absurdly tricky for even the most powerful computers to unravel directly for any system with more than a handful of particles.

Now, at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) in New York City and the École Polytechnique FĂ©dĂ©rale de Lausanne (EPFL) in Switzerland have sidestepped the problem. They created a way to simulate entanglement by adding to their computations extra “ghost” electrons that interact with the system’s actual electrons.