Toggle light / dark theme

Gravitational waves, like the discovery of the Higgs boson in 2012, have made their mark on a decade of extraordinary discoveries in physics. Unlike gravity, which is created when massive objects leave their mark in the fabric of spacetime, gravitational waves are very weak ripples in spacetime that are caused by gravity-accelerated masses.

So far, researchers have been able to detect the produced by the melting together of very heavy objects, such as black holes or neutron stars. When this happens, these echoes from the past reverberate through the whole universe and finally reach Earth, allowing us to piece together what happened millions of light-years ago.

Current gravitational-wave observatories can only detect a few gravitational waves as they cover just a narrow spectrum of the whole range of wavelengths that are emitted. Future gravitational-wave observatories, such as the Einstein Telescope, a CERN-recognized experiment, need to be larger in order to search for a larger bandwidth of gravitational waves that could tell us more about the universe.

The process that powers much of life on Earth, photosynthesis, is so finely tuned that just one photon is enough to kick it off.

Scientists have long suspected that photosynthesis must be sensitive to individual photons, or particles of light, because despite the way it dominates our days, the sun’s light is surprisingly sparse at the level of individual plant cells. But only now, with the help of quantum physics, have researchers been able to watch a single packet of light begin the process in an experiment described on June 14 in the journal Nature.

“It makes sense that photosynthesis only requires a single photon, but to actually be able to measure that … is really groundbreaking,” says Sara Massey, a physical chemist at Southwestern University in Texas, who was not involved with the new research. “Being able to actually see that hands-on with the data from these experiments is very valuable.”

Nearly two decades have passed since the advent of graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

A team of physicists, including University of Massachusetts assistant professor Tigran Sedrakyan, recently announced in the journal Nature that they have discovered a new phase of matter. Called the “chiral bose-liquid state,” the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Under everyday conditions, matter can be a solid, liquid, or gas. But once you venture beyond the everyday—into temperatures approaching absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

The compelling feature of this new breed of quasiparticle, says Pedram Roushan of Google Quantum AI, is the combination of their accessibility to quantum logic operations and their relative invulnerability to thermal and environmental noise. This combination, he says, was recognized in the very first proposal of topological quantum computing, in 1997 by the Russian-born physicist Alexei Kitaev.

At the time, Kitaev realized that non-Abelian anyons could run any quantum computer algorithm. And now that two separate groups have created the quasi-particles in the wild, each team is eager to develop their own suite of quantum computational tools around these new quasiparticles.

Physicists at the Large Hadron Collider (LHC) are closing in on an explanation for why we live in a universe of matter and not antimatter.

Matter and antimatter are two sides of the same coin. Every type of particle has an anti-particle, which is its equal and opposite. For instance, the antimatter equivalent of a negatively charged electron is a positively charged positron.

A team of scientists have successfully demonstrated the world’s first cosmic-ray GPS to detect movement underground and in volcanoes which can potentially aid in future search-and-rescue missions.

Cosmic rays are high-energy particles originating from outer space, including sources such as the sun, distant galaxies, supernovae, and other celestial bodies. Although we can’t see or feel cosmic rays directly, they constantly bombard the Earth from outer space.

In fact, these particles are so abundant that scientists estimate one cosmic ray hits one square centimeter of the Earth’s surface every minute! Scientists study cosmic rays to learn about the universe and how particles interact at high energies.

Superfast, subatomic-sized particles called muons have been used to wirelessly navigate underground for the first time. By using muon-detecting ground stations synchronized with an underground muon-detecting receiver, researchers at the University of Tokyo were able to calculate the receiver’s position in the basement of a six-story building.

As GPS cannot penetrate rock or water, this new technology could be used in future search and rescue efforts, to monitor undersea volcanoes, and guide autonomous vehicles underground and underwater. The findings are published in the journal iScience.

GPS, the , is a well-established navigation tool and offers an extensive list of positive applications, from safer air travel to real-time location mapping. However, it has some limitations. GPS signals are weaker at and can be jammed or spoofed (where a counterfeit signal replaces an authentic one). Signals can also be reflected off surfaces like walls, interfered with by trees, and can’t pass through buildings, rock or water.

How can the mindless microscopic particles that compose our brains ‘experience’ the setting sun, the Mozart Requiem, and romantic love? How can sparks of brain electricity and flows of brain chemicals literally be these felt experiences or be ‘about’ things that have external meaning? How can consciousness be explained?

Free access to Closer To Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje.

Watch more interviews on the mystery of consciousness: https://rb.gy/sxtbb.