Toggle light / dark theme

For over ten years, physicists have been able to pinpoint the exact positions of individual atoms with a precision finer than one-thousandth of a millimeter using a specialized microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom – i.e., the distance between the atom and the microscope objective – is lacking.

A new method has now been developed that can determine all three spatial coordinates of an atom with one single image. This method – developed by the University of Bonn and University of Bristol – is based on an ingenious physical principle. The study was recently published in the specialist journal Physical Review A.

“Opposites charges attract; like charges repel” is a fundamental principle of basic physics. However, a new study from Oxford University, recently published in the journal Nature Nanotechnology, has demonstrated that similarly charged particles in solution can, in fact, attract each other over long distances.

Just as surprisingly, the team found that the effect is different for positively and negatively charged particles, depending on the solvent.

Besides overturning long-held beliefs, these results have immediate implications for a range of processes that involve interparticle and intermolecular interactions across various length-scales, including self-assembly, crystallization, and phase separation.

MIT ’s breakthrough in integrating 2D materials into devices paves the way for next-generation devices with unique optical and electronic properties.

Two-dimensional materials, which are only a few atoms thick, can exhibit some incredible properties, such as the ability to carry electric charge extremely efficiently, which could boost the performance of next-generation electronic devices.

But integrating 2D materials into devices and systems like computer chips is notoriously difficult. These ultrathin structures can be damaged by conventional fabrication techniques, which often rely on the use of chemicals, high temperatures, or destructive processes like etching.

How much oxygen does Jupiter’s moon, Europa, produce, and what can this teach us about its subsurface liquid water ocean? This is what a study published today in Nature Astronomy hopes to address as an international team of researchers investigated how charged particles break apart the surface ice resulting in hydrogen and oxygen that feed Europa’s extremely thin atmosphere. This study holds the potential to help scientists better understand the geologic and biochemical processes on Europa, along with gaining greater insight into the conditions necessary for finding life beyond Earth.

For the study, the researchers used the Jovian Auroral Distributions Experiment (JADE) instrument onboard NASA’s June spacecraft to collect data on the amount of oxygen being discharged from Europa’s icy surface due to charge particles emanating from Jupiter’s massive magnetic field. In the end, the researchers found that oxygen production resulting from these charged particles interacting with the icy surface was approximately 26 pounds per second (12 kilograms per second), which is a much more focused number compared to previous estimates which ranged from a few pounds per second to over 2,000 pounds per second.

“Europa is like an ice ball slowly losing its water in a flowing stream. Except, in this case, the stream is a fluid of ionized particles swept around Jupiter by its extraordinary magnetic field,” said Dr. Jamey Szalay, who is a research scholar at Princeton University, a scientist on JADE, and lead author of the study. “When these ionized particles impact Europa, they break up the water-ice molecule by molecule on the surface to produce hydrogen and oxygen. In a way, the entire ice shell is being continuously eroded by waves of charged particles washing up upon it.”

High-energy neutrinos are extremely rare particles that have so far proved very difficult to detect. Fluxes of these rare particles were first detected by the IceCube Collaboration back in 2013.

Recent papers featured in Physical Review D and The Astrophysical Journal Letters found that nearby supernovae, especially Galactic ones, would be promising sources of high-energy neutrinos. This has inspired new studies exploring the possibility of detecting neutrinos originating from these sources using large particle collider detectors, such as the ATLAS detector at CERN.

Researchers at Harvard University, University of Nevada and Pennsylvania State University recently demonstrated that the ATLAS detector can measure the flux of high-energy supernova neutrinos. Their new paper, published in Physical Review Letters, could inspire future efforts aimed at detecting fluxes of high-energy neutrinos.

There is reason to believe that novel physics outside the standard model may be on the horizon.

When two neutron stars merge, a short-lived, hot, dense remnant is created. This residue provides an excellent environment for the synthesis of unusual particles. For a brief while, the remnant becomes far hotter than the individual stars before congealing into a larger neutron star or, depending on the original masses, a black hole.

A new study suggests that neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter.

Optical properties of afterglow luminescent particles (ALPs) in mechanoluminescence (ML) and mechanical quenching (MQ) have attracted great attention for diverse technological applications. A team of researchers from Pohang University of Science and Technology (POSTECH) has garnered attention by developing an optical display technology with ALPs enabling the writing and erasure of messages underwater.

The team, comprised of Professor Sei Kwang Hahn and Ph.D. candidate Seong-Jong Kim from the Department of Materials Science and Engineering at the POSTECH, uncovered a distinctive optical phenomenon in ALPs. Subsequently, they successfully created a device to implement this phenomenon. Their findings have been published in Advanced Functional Materials.

ALPs have the capability to absorb energy and release it gradually, displaying mechanoluminescence when subjected to external physical pressure and undergoing mechanical quenching where the emitted light fades away. While there has been active research on utilizing this technology for optical displays, the precise mechanism has remained elusive.

April 17, 2021, was a day like any other day on the sun, until a brilliant flash erupted and an enormous cloud of solar material billowed away from our star. Such outbursts from the sun are not unusual, but this one was unusually widespread, hurling high-speed protons and electrons at velocities nearing the speed of light and striking several spacecraft across the inner solar system.

In fact, it was the first time such high-speed protons and electrons—called (SEPs)—were observed by spacecraft at five different, well-separated locations between the sun and Earth as well as by spacecraft orbiting Mars. And now these diverse perspectives on the solar storm are revealing that different types of potentially dangerous SEPs can be blasted into space by different solar phenomena and in different directions, causing them to become widespread.

“SEPs can harm our technology, such as satellites, and disrupt GPS,” said Nina Dresing of the Department of Physics and Astronomy, University of Turku in Finland. “Also, humans in space or even on airplanes on polar routes can suffer harmful radiation during strong SEP events.”