Toggle light / dark theme

Simultaneous detection of uranium isotopes and fluorine advances nuclear nonproliferation monitoring

Combining two techniques, analytical chemists at the Department of Energy’s Oak Ridge National Laboratory have become the first to detect fluorine and different isotopes of uranium in a single particle at the same time. Because fluorine is essential for converting uranium into a form suitable for enrichment, spotting both elements together may help inspectors of the International Atomic Energy Agency, or IAEA, determine the intended use of a nuclear material.

‘Writing’ with atoms could transform materials fabrication for quantum devices

A new technology to continuously place individual atoms exactly where they are needed could lead to new materials for devices that address critical needs for the field of quantum computing and communication that cannot be produced by conventional means, say scientists who developed it.

A research team at the Department of Energy’s Oak Ridge National Laboratory created a novel advanced microscopy tool to “write” with atoms, placing those atoms exactly where they are needed to give a material new properties.

“By working at the atomic scale, we also work at the scale where quantum properties naturally emerge and persist,” said Stephen Jesse, a materials scientist who leads this research and heads the Nanomaterials Characterizations section at ORNL’s Center for Nanophase Materials Sciences, or CNMS. “We aim to use this improved access to quantum behavior as a foundation for future devices that rely on uniquely quantum phenomena, like entanglement, for improving computers, creating more secure communications and enhancing the sensitivity of detectors.”

Cosmology Is at a Tipping Point—We May Be on the Verge of Discovering New Physics

For the past few years, a series of controversies have rocked the well-established field of cosmology. In a nutshell, the predictions of the standard model of the universe appear to be at odds with some recent observations.

There are heated debates about whether these observations are biased, or whether the cosmological model, which predicts the structure and evolution of the entire universe, may need a rethink. Some even claim that cosmology is in crisis. Right now, we do not know which side will win. But excitingly, we are on the brink of finding that out.

To be fair, controversies are just the normal course of the scientific method. And over many years, the standard cosmological model has had its share of them. This model suggests the universe is made up of 68.3 percent “dark energy” (an unknown substance that causes the universe’s expansion to accelerate), 26.8 percent dark matter (an unknown form of matter) and 4.9 percent ordinary atoms, very precisely measured from the cosmic microwave background —the afterglow of radiation from the Big Bang.

A dual-species Rydberg array

In quantum computing, scientists often work with arrays of atoms called Rydberg atom arrays, which allow them to simulate quantum systems and perform computations.


Rydberg atoms in optical tweezers are a promising platform for quantum information science. A platform composed of dual-species Rydberg arrays has been realized, offering access to unexplored interaction regimes and crosstalk-free midcircuit control.

Team studies the emergence of fluctuating hydrodynamics in chaotic quantum systems

Researchers at Ludwig-Maximilians-Universität, Max-Planck-Institut für Quantenoptik, Munich Center for Quantum Science and Technology (MCQST) and the University of Massachusetts recently carried out a study investigating the equilibrium fluctuations in large quantum systems. Their paper, published in Nature Physics, outlines the results of large-scale quantum simulations performed using a quantum gas microscope, an experimental tool used to image and manipulate individual atoms in ultracold atomic gases.

/* */