Menu

Blog

Archive for the ‘particle physics’ category: Page 143

Aug 29, 2023

China achieves big leap in 2D semiconductor wafer tech

Posted by in categories: innovation, particle physics

Chinese scientists have just made a massive breakthrough in developing 2D, one-atom-thick semiconductors, SCMP reports.

Chinese scientists have made a significant breakthrough in the world of semiconductors, the.

Continue reading “China achieves big leap in 2D semiconductor wafer tech” »

Aug 29, 2023

Quantum discovery verifies a decades-old theory on how monopoles decay

Posted by in categories: particle physics, quantum physics

The field of quantum physics is rife with paths leading to tantalizing new areas of study, but one rabbit hole offers a unique vantage point into a world where particles behave differently—through the proverbial looking glass.

Dubbed the “Alice ring” after Lewis Carroll’s world-renowned stories on Alice’s Adventures in Wonderland, the appearance of this object verifies a decades-old theory on how monopoles decay. Specifically, that they decay into a ring-like vortex, where any other monopoles passing through the center are flipped into their opposite magnetic charges.

Published in Nature Communications on August 29, these findings mark the latest discovery in a string of work that has spanned the collaborative careers of Aalto University Professor Mikko Möttönen and Amherst College Professor David Hall.

Aug 29, 2023

Physicists develop series of quality control tests for quantum computers

Posted by in categories: mathematics, mobile phones, particle physics, quantum physics, supercomputing

Quantum technologies—and quantum computers in particular—have the potential to shape the development of technology in the future. Scientists believe that quantum computers will help them solve problems that even the fastest supercomputers are unable to handle yet. Large international IT companies and countries like the United States and China have been making significant investments in the development of this technology. But because quantum computers are based on different laws of physics than conventional computers, laptops, and smartphones, they are more susceptible to malfunction.

An interdisciplinary research team led by Professor Jens Eisert, a physicist at Freie Universität Berlin, has now found ways of testing the quality of quantum computers. Their study on the subject was recently published in the scientific journal Nature Communications. These scientific quality control tests incorporate methods from physics, computer science, and mathematics.

Quantum physicist at Freie Universität Berlin and author of the study, Professor Jens Eisert, explains the science behind the research. “Quantum computers work on the basis of quantum mechanical laws of physics, in which or ions are used as computational units—or to put it another way—controlled, minuscule physical systems. What is extraordinary about these computers of the future is that at this level, nature functions extremely and radically differently from our everyday experience of the world and how we know and perceive it.”

Aug 28, 2023

A Hidden State Between Liquid And Solid May Have Been Found

Posted by in categories: materials, particle physics

Glass might look and feel like a perfectly ordered solid, but up close its chaotic arrangement of particles more closely resemble the tumultuous mess of a freefalling liquid frozen in time.

Known as amorphous solids, materials in this state defy easy explanation. New research involving computation and simulation is yielding clues. In particular, it suggests that, somewhere in between liquid and solid states is a kind of rearrangement we didn’t know existed.

Continue reading “A Hidden State Between Liquid And Solid May Have Been Found” »

Aug 28, 2023

Clean Power Breakthrough: “Impossible” Energy Generation Using Graphene Challenges Century-Old Physics Paradigms

Posted by in categories: materials, particle physics

A team of researchers reports they have succeeded in disproving a long-held tenet of modern physics–that useful work cannot be obtained from random thermal fluctuations–thanks in part to the unique properties of graphene.

The microscopic motion of particles within a fluid, otherwise known as Brownian motion for its discovery by Scottish scientist Robert Brown, has long been considered an impossible means of attempting to generate useful work.

The idea had been most famously laid to rest decades ago by physicist Richard Feynman, who proposed a thought experiment in May 1962 involving an apparent perpetual motion machine, dubbed a Brownian ratchet.

Aug 28, 2023

Quantum Entanglement Waves Detected For The First Time

Posted by in categories: particle physics, quantum physics, space

For the first time, researchers have been able to track the behavior of triplons, a quasi-particle created between entangled electrons. They are very tricky to study and they do not form in conventional magnetic material. Now, researchers have been able to detect them for the first time using real-space measurements.

Quasi particles are not real particles. They form in specific interactions, but for as long as that interaction lasts they behave like a particle. The interaction in this case is the entanglement of two electrons. This pair can be entangled in a singlet state or a triplet state, and the triplon comes from the latter interaction.

To get the triplon in the first place, the team used small organic molecules called cobalt-phthalocyanine. What makes the molecule interesting is that it possesses a frontier electron. Now, don’t go picture some gunslinger particle – a frontier electron is simply an electron on the highest-energy occupied orbital.

Aug 26, 2023

“Truly Mind-Boggling” Breakthrough: Graphene Surprise Could Help Generate Hydrogen Cheaply and Sustainably

Posted by in categories: nanotechnology, particle physics

Researchers have discovered that graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Aug 26, 2023

Long Considered Impossible in Physics: Nonlinear Circuit Harvests Clean Power Using Graphene

Posted by in categories: nanotechnology, particle physics

The discovery overturns more than a century of physics orthodoxy by identifying a new form of energy that can be extracted from ambient heat using graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Aug 26, 2023

The first observation of neutrinos at CERN’s Large Hadron Collider

Posted by in categories: nuclear energy, particle physics

Neutrinos are tiny and neutrally charged particles accounted for by the Standard Model of particle physics. While they are estimated to be some of the most abundant particles in the universe, observing them has so far proved to be highly challenging, as the probability that they will interact with other matter is low.

To detect these particles, physicists have been using detectors and advanced equipment to examine known sources of . Their efforts ultimately led to the observation of neutrinos originating from the sun, cosmic rays, supernovae and other cosmic objects, as well as and nuclear reactors.

A long-standing goal in this field of study was to observe neutrinos inside colliders, particle accelerators in which two beams of particles collide with each other. Two large research collaborations, namely FASER (Forward Search Experiment) and SND (Scattering and Neutrino Detector)@LHC, have observed these collider neutrinos for the very first time, using detectors located at CERN’s Large Hadron Collider (LHC) in Switzerland. The results of their two studies were recently published in Physical Review Letters.

Aug 26, 2023

Why the empty atom picture misunderstands quantum theory

Posted by in categories: chemistry, particle physics, quantum physics, space

The association between this mass concentration and the idea that atoms are empty stems from a flawed view that mass is the property of matter that fills a space. However, this concept does not hold up to close inspection, not even in our human-scale world. When we pile objects on top of each other, what keeps them separated is not their masses but the electric repulsion between the outmost electrons at their touching molecules. (The electrons cannot collapse under pressure due to the Heisenberg uncertainty and Pauli exclusion principles.) Therefore, the electron’s electric charge ultimately fills the space.

Anyone taking Chemistry 101 is likely to be faced with diagrams of electrons orbiting in shells.

In atoms and molecules, electrons are everywhere! Look how the yellow cloud permeates the entire molecular volume in Figure 1. Thus, when we see that atoms and molecules are packed with electrons, the only reasonable conclusion is that they are filled with matter, not the opposite.