Menu

Blog

Archive for the ‘particle physics’ category: Page 143

Dec 1, 2022

MIT researchers creating robots that give birth to other robots

Posted by in categories: particle physics, robotics/AI, transportation

Massachusetts Institute of Technology (MIT) researchers are building swarms of tiny robots that have built-in intelligence, allowing them to build structures, vehicles, or even larger versions of themselves.

The subunit of the robot, which is being developed at MIT’s Center for Bits and Atoms, is called a voxel and is capable of carrying power and data.

“When we’re building these structures, you have to build in intelligence,” MIT Professor and CBA Director Neil Gershenfeld said in a statement. “What emerged was the idea of structural electronics — of making voxels that transmit power and data as well as force.”

Dec 1, 2022

The exotic quantum effects found hiding inside ultra-thin materials

Posted by in categories: computing, particle physics, quantum physics

IT WAS March 2018. The atmosphere at the annual meeting of the American Physical Society at the Los Angeles Convention Center was highly charged. The session had been moved to the atrium to accommodate the crowds, but people still had to cram onto the balconies to get a view of the action.

Rumours had it that Pablo Jarillo-Herrero, a physicist at the Massachusetts Institute of Technology, had something momentous to report. He and his colleagues had been experimenting with graphene, sheets of carbon just a single atom thick that are peeled from the graphite found in pencil lead. Graphene was already celebrated for its various promising electronic properties, and much more besides.

Here, Jarillo-Herrero showed that if you stacked two graphene sheets and twisted, or rotated, one relative to the other at certain “magic angles”, you could make the material an insulator, where electric current barely flows, or a superconductor, where current flows with zero resistance. It was a staggering trick, and potentially hugely significant because superconductivity holds promise for applications ranging from quantum computing to nuclear fusion.

Dec 1, 2022

Quantum jumps: How Niels Bohr’s idea changed the world

Posted by in categories: particle physics, quantum physics, space

Bohr’s model of the atom is kind of crazy. His collage of ideas mixing old and new concepts was the fruit of Bohr’s amazing intuition. Looking only at hydrogen, the simplest of all atoms, Bohr formed the image of a miniature solar system, with a proton in the center and the electron circling around it.

Following the physicist’s way of doing things, he wanted to explain some of his observed data with the simplest possible model. But there was a problem. The electron, being negatively charged, is attracted to the proton, which is positive. According to classical electromagnetism, the theory that describes how charged particles attract and repel one another, an electron would spiral down to the nucleus. As it circled the proton, it would radiate away its energy and fall in. No orbit would be stable, and atoms could not exist. Clearly, something new and revolutionary was needed. The solar system could only go so far as an analogy.

To salvage the atom, Bohr had to invent new rules that clashed with classical physics. He bravely suggested the implausible: What if the electron could only circle the nucleus in certain orbits, separated from each other in space like the steps of a ladder or the layers of an onion? Just like you can’t stand between steps, the electron can’t stay anywhere between two orbits. It can only jump from one orbit to another, the same way we can jump between steps. Bohr had just described quantum jumps.

Dec 1, 2022

Physicists produce symmetry-protected Majorana edge modes on quantum computer

Posted by in categories: particle physics, quantum physics, robotics/AI

Physicists at Google Quantum AI have used their quantum computer to study a type of effective particle that is more resilient to environmental disturbances that can degrade quantum calculations. These effective particles, known as Majorana edge modes, form as a result of a collective excitation of multiple individual particles, like ocean waves form from the collective motions of water molecules. Majorana edge modes are of particular interest in quantum computing applications because they exhibit special symmetries that can protect the otherwise fragile quantum states from noise in the environment.

The condensed matter physicist Philip Anderson once wrote, “It is only slightly overstating the case to say that physics is the study of symmetry.” Indeed, studying and their relationship to underlying symmetries has been the main thrust of physics for centuries. Symmetries are simply statements about what transformations a system can undergo—such as a translation, rotation, or inversion through a mirror—and remain unchanged. They can simplify problems and elucidate underlying physical laws. And, as shown in the new research, symmetries can even prevent the seemingly inexorable quantum process of decoherence.

When running a calculation on a quantum computer, we typically want the quantum bits, or “qubits,” in the computer to be in a single, pure quantum state. But decoherence occurs when external electric fields or other environmental disturb these states by jumbling them up with other states to create undesirable states. If a state has a certain symmetry, then it could be possible to isolate it, effectively creating an island of stability that is impossible to mix with the other states that don’t also have the special symmetry. In this way, since the noise can no longer connect the symmetric state to the others, it could preserve the coherence of the state.

Nov 30, 2022

Antimatter Spacecraft: The Future of Interstellar Travel

Posted by in categories: particle physics, space travel

Year 2021 😁


Spacecrafts in dozens of sci-fi movies like Star Trek use antimatter propulsion systems to travel at unimaginably high speeds by warping spacetime. By using them, traveling to different planets and stars is significantly more efficient and quick. However, is it possible to make this sci-fi idea a reality? If so, how and when will we be able to use them? Let’s take a closer look.

Continue reading “Antimatter Spacecraft: The Future of Interstellar Travel” »

Nov 30, 2022

NASA uses a climate simulation supercomputer to better understand black hole jets

Posted by in categories: climatology, cosmology, evolution, particle physics, supercomputing

NASA’s Discover supercomputer simulated the extreme conditions of the distant cosmos.

A team of scientists from NASA’s Goddard Space Flight Center used the U.S. space agency’s Center for Climate Simulation (NCCS) Discover supercomputer to run 100 simulations of jets emerging from supermassive black holes.

Continue reading “NASA uses a climate simulation supercomputer to better understand black hole jets” »

Nov 29, 2022

First-time ATLAS measurement provides new look at Higgs

Posted by in category: particle physics

Luka Selem says he was always a curious kid. Growing up in France, he was given copies of Science et vie junior, a science magazine for young people, by his parents.

“Since I was very young, I was always interested in quite a lot of things,” he says. “I was always asking, ‘Why? But why that? Why that, and then why that?’ I wanted to go all the way to the end. I was never satisfied by the answer.”

Particle physics, the study of the fundamental particles and forces that make up everything around us, turned out to be a good way for Selem to search for answers. “In particle physics, there is no other ‘why,’” he says. “No one can tell me the rest of the story. I have to find it myself with my colleagues.”

Nov 29, 2022

How to fire projectiles through materials without breaking anything

Posted by in categories: nanotechnology, particle physics

When charged particles are shot through ultra-thin layers of material, sometimes spectacular micro-explosions occur, and sometimes the material remains almost intact. The reasons for this have now been explained by researchers at the TU Wien.

It sounds a bit like a : Some materials can be shot through with fast, electrically charged ions without exhibiting holes afterwards. What would be impossible at the macroscopic level is allowed at the level of individual particles. However, not all materials behave the same in such situations—in recent years, different research groups have conducted experiments with very different results.

At the TU Wien (Vienna, Austria), it has now been possible to find a detailed explanation of why some materials are perforated and others are not. This is interesting, for example, for the processing of thin membranes, which are supposed to have tailor-made nano-pores in order to trap, hold or let through very specific atoms or molecules there.

Nov 28, 2022

A scalable quantum memory with a lifetime over 2 seconds and integrated error detection

Posted by in categories: computing, particle physics, quantum physics

Quantum memory devices can store data as quantum states instead of binary states, as classical computer memories do. While some existing quantum memory technologies have achieved highly promising results, several challenges will need to be overcome before they can be implemented on a large scale.

Researchers at the AWS Center for Quantum Networking and Harvard University have recently developed a promising capable of error detection and with a lifetime or coherence time (i.e., the time for which a quantum memory can hold a superposition without collapsing) exceeding 2 seconds. This memory, presented in a paper in Science, could pave the way towards the creation of scalable quantum networks.

Quantum networks are systems that can distribute entangled , or qubits, to users who are in different geographic locations. While passing through the networks, qubits are typically encoded as photons (i.e., single particles of light).

Nov 28, 2022

Creating quantum-entangled networks of atomic clocks and accelerometers

Posted by in categories: particle physics, quantum physics

Researchers affiliated with the Q-NEXT quantum research center show how to create quantum-entangled networks of atomic clocks and accelerometers—and they demonstrate the setup’s superior, high-precision performance.

For the first time, scientists have entangled atoms for use as networked , specifically, atomic clocks and accelerometers.

The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on , their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.