Menu

Blog

Archive for the ‘particle physics’ category: Page 105

Apr 21, 2023

Giant orbital magnetic moment appears in a graphene quantum dot

Posted by in categories: computing, information science, particle physics, quantum physics

A giant orbital magnetic moment exists in graphene quantum dots, according to new work by physicists at the University of California Santa Cruz in the US. As well as being of fundamental interest for studying systems with relativistic electrons – that is those travelling at near-light speeds – the work could be important for quantum information science since these moments could encode information.

Graphene, a sheet of carbon just one atom thick, has a number of unique electronic properties, many of which arise from the fact that it is a semiconductor with a zero-energy gap between its valence and conduction bands. Near where the two bands meet, the relationship between the energy and momentum of charge carriers (electrons and holes) in the material is described by the Dirac equation and resembles that of a photon, which is massless.

These bands, called Dirac cones, enable the charge carriers to travel through graphene at extremely high, “ultra-relativistic” speeds approaching that of light. This extremely high mobility means that graphene-based electronic devices such as transistors could be faster than any that exist today.

Apr 21, 2023

The DarkSide experiment extends its search to dark matter–nucleon interactions

Posted by in categories: cosmology, particle physics

The DarkSide experiment is an ambitious research effort aimed at detecting dark matter particle interactions in liquid argon using a dual-phase physics detector located at the underground Gran Sasso National Laboratory. These interactions could be observed by minimizing background signals, and this could be possible thanks to the remarkable discrimination power of the scintillation pulse of liquefied argon in the DarkSide-50 detector, which can separate nuclear recoil events associated with these interactions from more than 100 million electronic recoil events linked to radioactive background.

The large team of researchers involved in the DarkSide experiment has recently been using the detector to search for lighter particles. The results of a new search for dark matter–nucleon interactions, published in Physical Review Letters, allowed them to set new constraints for sub-GeV/c2 dark matter.

“The DarkSide-50 experiment was designed as a test for the use of from underground sources, naturally depleted in the radioactive 39 Ar, for very large scale dark matter searches,” Cristiano Galbiati a Researcher at Princeton University and the Gran Sasso Science Institute, told Phys.org. “It is remarkable to see how a group of young researchers within the collaboration was able to exploit the apparatus to extract the best limit for dark matter searches that were not part of the original scope of the experiment. If anything, the ingenuity and resolve of this group should be credited for this important result.”

Apr 21, 2023

Heaviest Schrödinger cat achieved by putting a small crystal into a superposition of two oscillation states

Posted by in categories: particle physics, quantum physics

Even if you are not a quantum physicist, you will most likely have heard of Schrödinger’s famous cat. Erwin Schrödinger came up with the feline that can be alive and dead at the same time in a thought experiment in 1935. The obvious contradiction—after all, in everyday life we only ever see cats that are either alive or dead—has prompted scientists to try to realize analogous situations in the laboratory. So far, they have managed to do so using, for instance, atoms or molecules in quantum mechanical superposition states of being in two places at the same time.

At ETH, a team of researchers led by Yiwen Chu, professor at the Laboratory for Solid State Physics, has now created a substantially heavier Schrödinger cat by putting a small crystal into a of two oscillation states. Their results, which have been published this week in the journal Science, could lead to more robust quantum bits and shed light on the mystery of why quantum superpositions are not observed in the macroscopic world.

In Schrödinger’s original , a cat is locked up inside a metal box together with a radioactive substance, a Geiger counter and a flask of poison. In a certain time-frame—an hour, say—an atom in the substance may or may not decay through a quantum mechanical process with a certain probability, and the decay products might cause the Geiger counter to go off and trigger a mechanism that smashes the flask containing the poison, which would eventually kill the cat.

Apr 20, 2023

Unraveling the Mysteries of Protons — Neutrino Experiment Delivers Groundbreaking Results

Posted by in category: particle physics

The MINERvA experiment at Fermilab, utilizing the NuMI beam, has made the first precise depiction of a proton using neutrinos instead of light as the imaging tool.

The building blocks of atomic nuclei, protons and neutrons, are comprised of quarks and gluons that interact strongly with each other. Due to the strength of these interactions, determining the structure of protons and neutrons through theoretical calculation is challenging.

Therefore, scientists must resort to experimental methods to determine their structure. Neutrino experiments utilize targets consisting of nuclei comprised of numerous protons and neutrons bound together, which makes it difficult to deduce information about the structure of protons from these measurements.

Apr 20, 2023

First detection of neutrinos made at a particle collider

Posted by in category: particle physics

A superfluid neutrino radio telescope could scan the entire universe in seconds.


A team including physicists of the University of Bern has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN’s Large Hadron Collider (LHC). The discovery promises to deepen scientists’ understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.

Neutrinos are fundamental particles that played an important role in the early phase of the universe. They are key to learn more about the fundamental laws of nature, including how particles acquire mass and why there is more matter than antimatter. Despite being among the most abundant particles in the universe they are very difficult to detect because they pass through matter with almost no interaction. They are therefore often called “ghost particles.”

Neutrinos have been known for several decades and were very important for establishing the standard model of particle physics. But most neutrinos studied by physicists so far have been low-energy neutrinos. Previously, no neutrino produced at a particle collider had ever been detected by an experiment. Now, an international team including researchers from the Laboratory for High Energy Physics (LHEP) of the University of Bern has succeeded in doing just that. Using the FASER particle detector at CERN in Geneva, the team was able to detect very high energy neutrinos produced by brand a new source: CERN’s Large Hadron Collider (LHC). The international FASER collaboration announced this result on March 19 at the MORIOND EW conference in La Thuile, Italy.

Apr 20, 2023

Physicists Observe Particles Switch Between Matter and Antimatter

Posted by in category: particle physics

A team led by physicists from Oxford University analyzed data from the Large Hadron Collider (LHC) and discovered that a subatomic particle can switch between matter and antimatter, a report by New Atlas explained.

Antimatter, which is differentiated by having the opposite charge to normal matter, is composed of the antiparticles of normal matter. Some particles oscillate between being matter and antimatter via superposition, as illustrated by the thought experiment of Schrödinger’s cat.

In a world-first discovery, it was found that the charm meson, a subatomic particle made out of a charm quark and an antiquark, can travel as a mixture of their particle and antiparticle states, all the while spontaneously switching between the two. The finding is detailed on the preprint server arXiv.

Apr 19, 2023

Embracing variations: Physicists first to analyze noise in Lambda-type quantum memory

Posted by in categories: computing, particle physics, quantum physics, security

In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.

Virginia Lorenz, a professor of physics at the University of Illinois Urbana-Champaign, studies Lambda-type optical quantum , a promising technology that relies on light interacting with a large group of atoms. She is developing a device based on hot metallic vapor with graduate student Kai Shinbrough.

As the researchers work towards a practical device, they are also providing some of the first theoretical analyses of Lambda-type devices. Most recently, they reported the first variance-based sensitivity analysis describing the effects of experimental noise and imperfections in Physical Review A.

Apr 19, 2023

A New Kind of Symmetry Shakes Up Physics

Posted by in categories: particle physics, quantum physics

So-called “higher symmetries” are illuminating everything from particle decays to the behavior of complex quantum systems.

Apr 17, 2023

Disentangling the Sun’s Impact on Cosmic Rays

Posted by in categories: cosmology, particle physics

An instrument on the International Space Station has revealed new information about how the Sun’s magnetic field affects cosmic rays on their way to Earth.

Galactic cosmic rays (GCRs) are highly energetic charged particles that are produced through various acceleration mechanisms in astrophysical objects such as supernova remnants. These particles propagate through the Galaxy and can reach the heliosphere, a region dominated by plasma originating from the Sun. Within the heliosphere, GCRs interact with the turbulent plasma environment in a way that decreases their flux, causing them to diffuse in space and to lose energy [1]. Most of the impact of this “solar modulation” on GCRs is independent of particle charge. But GCR drift is also influenced by large-scale gradients in, and curvatures of, the heliospheric magnetic field and by the current sheet—a tenuous structure that separates the heliosphere into regions of opposite magnetic-field polarity [2].

Apr 17, 2023

Physicists find unusual waves in nickel-based magnet

Posted by in category: particle physics

Perturbing electron spins in a magnet usually results in excitations called “spin waves” that ripple through the magnet like waves on a pond that’s been struck by a pebble. In a new study, Rice University physicists and their collaborators have discovered dramatically different excitations called “spin excitons” that can also “ripple” through a nickel-based magnet as a coherent wave.

In a study published in Nature Communications, the researchers reported finding unusual properties in nickel molybdate, a layered magnetic crystal. Subatomic particles called electrons resemble miniscule magnets, and they typically orient themselves like compass needles in relation to magnetic fields. In experiments where neutrons were scattered from magnetic nickel ions inside the crystals, the researchers found that two outermost electrons from each nickel ion behaved differently. Rather than aligning their spins like compass needles, the two canceled one another in a phenomenon physicists call a spin singlet.

“Such a substance should not be a magnet at all,” said Rice’s Pengcheng Dai, corresponding author of the study. “And if a neutron scatters off a given nickel ion, the excitations should remain local and not propagate through the sample.”