Menu

Blog

Archive for the ‘nuclear energy’ category: Page 83

Dec 14, 2020

Tiny Nuclear Reactors Yield a Huge Amount of Clean Hydrogen

Posted by in category: nuclear energy

They’re another welcome weapon in the fight against fossil fuels.


After getting bodied in the news cycle for a few months, small modular nuclear startup NuScale Power has an additional potential path to the diverse energy market. In a new evaluation run by the U.S. Department of Energy’s Idaho National Laboratory, NuScale’s nuclear module performed effective catalysis for hydrogen.

☢️You love nuclear. So do we. Let’s nerd out over nuclear together.

Continue reading “Tiny Nuclear Reactors Yield a Huge Amount of Clean Hydrogen” »

Dec 14, 2020

This New Nuclear Battery Could Power Deep Space Missions for Decades

Posted by in categories: nuclear energy, space

😃


A new method called lattice confinement fusion could be the compact, long-lasting energy source we’ve been searching for to power deep space missions 🤯 🚀.

Dec 10, 2020

America Finally Makes Plans for Its Own Nuclear Fusion Power Plant

Posted by in category: nuclear energy

It’s happening at last.


For the first time, a major group of American scientists has agreed to work toward opening a nuclear fusion plant by the 2040s. The timeframe is intentional, letting scientists work on and learn from giant projects like Europe’s ITER and China’s EAST before designing a prototype of a fusion plant for the United States.

☢️ You love nuclear. So do we. Let’s nerd out over nuclear together.

Continue reading “America Finally Makes Plans for Its Own Nuclear Fusion Power Plant” »

Dec 9, 2020

Small Modular Reactors Explained — Nuclear Power’s Future?

Posted by in categories: futurism, nuclear energy

Nuclear Power’s Future? Get Surfshark VPN at https://surfshark.deals/undecided and enter promo code UNDECIDED for 84% off and 4 extra months for free! With the growing popularity of solar and wind, we sometimes forget another powerful low-carbon energy source: nuclear. It can be a divisive topic, but there’s a really interesting alternative to building out massive, expensive nuclear plants that’s worth talking about: Small Modular Reactors. What are they? What are the benefits? And do they really address the downsides of nuclear energy?

▻ Watch Liquid Air Battery Explained — Rival to Lithium Ion Batteries? https://youtu.be/yb1Nuk3_t_4

Continue reading “Small Modular Reactors Explained — Nuclear Power’s Future?” »

Dec 8, 2020

Research group has made a defect-resistant superalloy that can be 3D-printed

Posted by in categories: chemistry, economics, engineering, nuclear energy, particle physics, space

In recent years, it has become possible to use laser beams and electron beams to “print” engineering objects with complex shapes that could not be achieved by conventional manufacturing. The additive manufacturing (AM) process, or 3D printing, for metallic materials involves melting and fusing fine-scale powder particles—each about 10 times finer than a grain of beach sand—in sub-millimeter-scale “pools” created by focusing a laser or electron beam on the material.

“The highly focused beams provide exquisite control, enabling ‘tuning’ of properties in critical locations of the printed object,” said Tresa Pollock, a professor of materials and associate dean of the College of Engineering at UC Santa Barbara. “Unfortunately, many advanced metallic alloys used in extreme heat-intensive and chemically corrosive environments encountered in energy, space and nuclear applications are not compatible with the AM process.”

The challenge of discovering new AM-compatible materials was irresistible for Pollock, a world-renowned scientist who conducts research on advanced metallic materials and coatings. “This was interesting,” she said, “because a suite of highly compatible alloys could transform the production of having high economic value—i.e. materials that are expensive because their constituents are relatively rare within the earth’s crust—by enabling the manufacture of geometrically complex designs with minimal material waste.

Dec 7, 2020

US Space Force and NASA Looking to Privatize Nuclear Spacecraft Production

Posted by in categories: chemistry, Elon Musk, nuclear energy, space travel

LOS ANGELES, CA / ACCESSWIRE / December 7, 2020 / US Nuclear (OTCQB: UCLE) is the prime contractor to build MIFTI’s fusion generators, which could be used in the relatively near future to power the propulsion systems for space travel and provide plentiful, low-cost, clean energy for the earth and other planetary bases once our astronauts get to their destination, be it the moon, Mars, Saturn or beyond. Chemical powered rockets opened the door to space travel, but are still far too slow and heavy even to travel to distant planets within our solar system, let alone travel to other stars. Accordingly, NASA is now looking to nuclear powered rockets that can propel a space vessel at speeds close to the speed of light and thermonuclear power plants on the moon and Mars, as these are the next steps towards space exploration and colonization.

The US Energy Secretary, Dan Brouillette, recently said, “If we want to engage in outer space, or deep space as we call it, we have to rely upon nuclear fuels to get us there… that will allow us to get to Mars and back on ‘one tank of gas’.” This is made possible by the large energy density ratio which makes the fuel weight for chemical fuels ten million times higher than the fuel that powers the fusion drive. NASA is now relying on private companies to build spaceships: big companies like Boeing, but more and more on high-tech startups such as Elon Musk’s Space-X, Jeff Bezos’s Blue Origin, and Richard Branson’s Virgin Atlantic.

While nuclear fission has been considered as a basis for the next generation of rocket engines, the fuel used for fission is enriched uranium, which is scarce, costly, unstable, and hazardous. On the other hand, thermonuclear fusion uses a clean, low-cost isotope of hydrogen from ordinary seawater, and one gallon of this seawater extraction yields about the same amount of energy as 300 gallons of gasoline.

Dec 5, 2020

China Just Turned On Its Artificial Sun

Posted by in category: nuclear energy

Now that EAST has switched on for what its makers say is the real deal, the project has a lot to prove. It costs a huge amount of energy input to bring a tokamak reactor’s entire assembly up to speed. If a fusion reactor can’t easily outpace that input, it will never produce power, let alone the dream of virtually limitless power that fusion proponents have sold for decades.


China has switched on its record-setting “artificial sun” tokamak, state media reported today. This begins a timeline China hopes will be similar to the one planned by the global International Thermonuclear Experimental Reactor (ITER) project.

☢️ You love nuclear. So do we. Let’s nerd out over nuclear together.

Continue reading “China Just Turned On Its Artificial Sun” »

Dec 4, 2020

China Just Powered Up Its “Artificial Sun” Fusion Reactor

Posted by in category: nuclear energy

China is getting serious about nuclear fusion energy.

Dec 2, 2020

Why the Future of Nuclear Power Is Tiny and Factory-Made

Posted by in categories: nuclear energy, particle physics

In the 1950s, few things seemed more futuristic and utopian than harnessing nuclear energy to power your home. Towering nuclear reactors popped up across the U.S. with the promise of harvesting energy from smashed atoms of Uranium to power everything from lights in an office to an oven cooking a pot roast. With clean and efficient nuclear power, anything seemed possible.

But as the years went on, doubt about the safety of these reactors began to poison the bright future they’d once promised. Stories of nuclear waste polluting waterways downstream of power plants began to stir alarm, and in the 1980s the Chernobyl nuclear power plant explosion sent radiation billowing across Europe and into the tissues of an estimated 4,000 Ukrainians who died from radiation poisoning. Even as recently as 2011, Japan’s Fukushima nuclear power plant faced catastrophe when a tsunami knocked out its power supply and led all three of its nuclear reactors to melt down.

All in all, it’s been a tough few decades for nuclear energy’s public image. But nuclear scientists say that now, more than ever, is the time to reinvest in nuclear innovation. Governments agree: In the U.K. Rolls-Royce plans to roll out 16 mini-nuclear plants over the next five years and China, an emerging nuclear super power, has pledged to ramp up its nuclear use to meet emissions goals.

Dec 1, 2020

Rivers could generate thousands of nuclear power plants worth of energy, thanks to a new ‘blue’ membrane

Posted by in categories: chemistry, nanotechnology, nuclear energy

There are several ways to generate power from that mixing. And a couple of blue energy power plants have been built. But their high cost has prevented widespread adoption. All blue energy approaches rely on the fact that salts are composed of ions, or chemicals that harbor a positive or negative charge. In solids, the positive and negative charges attract one another, binding the ions together. (Table salt, for example, is a compound made from positively charged sodium ions bound to negatively charged chloride ions.) In water, these ions detach and can move independently.

By pumping the positive ions—like sodium or potassium—to the other side of a semipermeable membrane, researchers can create two pools of water: one with a positive charge, and one with a negative charge. If they then dunk electrodes in the pools and connect them with a wire, electrons will flow from the negatively charged to the positively charged side, generating electricity.

In 2013, French researchers made just such a membrane. They used a ceramic film of silicon nitride—commonly used in industry for electronics, cutting tools, and other uses—pierced by a single pore lined with a boron nitride nanotube (BNNT), a material being investigated for use in high-strength composites, among other things. Because BNNTs are highly negatively charged, the French team suspected they would prevent negatively charged ions in water from passing through the membrane (because similar electric charges repel one another). Their hunch was right. They found that when a membrane with a single BNNT was placed between fresh- and saltwater, the positive ions zipped from the salty side to the fresh side, but the negatively charged ions were mostly blocked.

Page 83 of 137First8081828384858687Last