Menu

Blog

Archive for the ‘nuclear energy’ category: Page 73

Jun 15, 2021

ITER Global Fusion Energy Project: After a Decade of Design and Fabrication, Worlds Most Powerful Magnet Ready

Posted by in categories: biotech/medical, economics, nuclear energy

After a decade of design and fabrication, General Atomics is ready to ship the first module of the Central Solenoid, the world’s most powerful magnet. It will become a central component of ITER, a machine that replicates the fusion power of the Sun. ITER is being built in southern France by 35 partner countries.

ITER’s mission is to prove energy from hydrogen fusion can be created and controlled on earth. Fusion energy is carbon-free, safe, and economic. The materials to power society with hydrogen fusion for millions of years are readily abundant.

Continue reading “ITER Global Fusion Energy Project: After a Decade of Design and Fabrication, Worlds Most Powerful Magnet Ready” »

Jun 15, 2021

Worlds most powerful MAGNET is ready to be shipped to France

Posted by in category: nuclear energy

For a nuclear fusion project that will replicate reactions in the SUN to create ‘the ultimate clean energy source…


The world’s largest magnet, a decade in the making, is ready to be shipped to France where it will form the centrepiece of a project to replicate the power of the sun.

Continue reading “Worlds most powerful MAGNET is ready to be shipped to France” »

Jun 14, 2021

Bringing nuclear power to new level: Russia starts building worlds first fast-neutron reactor

Posted by in categories: nuclear energy, sustainability

The BREST-OD-300 reactor is planned to start operating in 2026. A fuel production facility will be built by 2023 and the construction of an irradiated fuel reprocessing module is scheduled to start by 2024, Rosatom said. The design of the lead-cooled reactor is based on the principles of so-called natural safety, which makes it possible to abandon the melt trap.


“The successful implementation of this project will allow our country to become the world’s first owner of the nuclear power technology which fully meets the principles of sustainable development in terms of environment, accessibility, reliability, and efficient use of resources,” said Rosatom’s Director General Alexey Likhachev. “Today, we reaffirm our reputation as a leader in world progress in the nuclear technologies, that offers humanity unique solutions aimed at improving people’s lives,” he added.

According to President of the Kurchatov Institute Mikhail Kovalchuk, the project is aimed at bringing nuclear power to a new level.

Jun 14, 2021

Exclusive: US assessing reported leak at Chinese nuclear power facility

Posted by in categories: government, nuclear energy

History seems to keep repeating when it concerns nuclear fission. Hopefully, no one gets hurt.


The US government has spent the past week assessing a report of a leak at a Chinese nuclear power plant, after a French company that part owns and helps operate it warned of an “imminent radiological threat,” according to US officials and documents reviewed by CNN.

The warning included an accusation that the Chinese safety authority was raising the acceptable limits for radiation detection outside the Taishan Nuclear Power Plant in Guangdong province in order to avoid having to shut it down, according to a letter from the French company to the US Department of Energy obtained by CNN.

Continue reading “Exclusive: US assessing reported leak at Chinese nuclear power facility” »

Jun 13, 2021

You Can Gas Up Your Car With Garbage, If Its The 2015 Chevrolet Impala Bi-Fuel

Posted by in categories: nuclear energy, time travel, transportation

Circa 2015


With the 2015 Chevrolet Impala Bi-Fuel, drivers can top off their tank with waste byproducts, almost like Dr. Emmett Brown — aka “Doc” — did with his time-traveling DeLorean in the movie “Back to the Future.”

But instead of dumping banana peels and backwash from a beer can directly into the DeLorean’s “Mr. Fusion” reactor (see the video clip below), Impala Bi-Fuel owners simply fill up on natural gas, some of which comes from biogas, Chevy points out in its announcement about the new full-size sedan arriving in dealerships soon.

Continue reading “You Can Gas Up Your Car With Garbage, If Its The 2015 Chevrolet Impala Bi-Fuel” »

Jun 13, 2021

Is the Space Force about to acquire SpaceX Starships?

Posted by in categories: government, military, nuclear energy, space

NASA is already so impressed by the Starship that it has contracted SpaceX to build a lunar-landing version of it to return astronauts to the moon as early as 2024. The selection has enraged Musk’s rivals such as Blue Origin’s Jeff Bezos Jeffrey (Jeff) Preston BezosSeat on Bezos-backed space flight sells for million at auction Researchers: Wealth accumulation at Ivy League presents ‘fundamental threat to our democracy’ Democrats reintroduce bill to create ‘millionaires surtax’ MORE and has perturbed some members of Congress. Both have only themselves to blame — Blue Origin for offering an inferior design and Congress for underfunding the Human Landing System project.

Military technology development has often been defined by the advent of new ways to transport people and cargo. The racing galleon of the 16th century became the frigates and ships of the line that defined naval warfare in the 18th and early 19th centuries. The steam engine and iron and steel armor led to the dreadnoughts of the early 20th century. Modern warships incorporate nuclear power. Air travel has caused the same sort of evolution, from the motorized kites of World War I to modern jets that can deliver destruction and death from thousands of miles away.

Now, space transportation technology is poised to cause a similar revolution in the military’s ability to defend the United States and its allies and to inflict mayhem and death on any enemy that would propose to make war on America. The great irony is that the Starship will be used by a branch of the military that Musk once compared to Starfleet, the fictional service depicted in the “Star Trek” television shows and movies. The thought would likely bring a smile to the face of the franchise’s creator, Gene Roddenberry, in whatever afterlife one envisions him inhabiting.

Jun 5, 2021

A Great Deal of Work Lies Ahead in the Development of In Vivo Reprogramming as a Therapy

Posted by in categories: bioengineering, biotech/medical, business, genetics, life extension, nuclear energy

The latest from Calico. A bit technical.


Reprogramming of ordinary somatic cells into induced pluripotent stem cells (iPSCs) was initially thought to be a way to obtain all of the patient matched cells needed for tissue engineering or cell therapies. A great deal of work has gone towards realizing that goal over the past fifteen years or so; the research community isn’t there yet, but meaningful progress has taken place. Of late, another line of work has emerged, in that it might be possible to use partial reprogramming as a basis for therapy, delivering reprogramming factors into animals and humans in order to improve tissue function, without turning large numbers of somatic cells into iPSCs and thus risking cancer or loss of tissue structure and function.

Reprogramming triggers some of the same mechanisms of rejuvenation that operate in the developing embryo, removing epigenetic marks characteristic of aged tissues, and restoring youthful mitochondrial function. It cannot do much for forms of damage such as mutations to nuclear DNA or buildup of resilient metabolic waste, but the present feeling is there is nonetheless enough of a potential benefit to make it worth developing this approach to treatments for aging. Some groups have shown that partial reprogramming — via transient expression of reprogramming factors — can reverse functional losses in cells from aged tissues without making those cells lose their differentiated type. But this is a complicated business. Tissues are made up of many cell types, all of which can need subtly different approaches to safe reprogramming.

Today’s open access preprint is illustrative of the amount of work that lies ahead when it comes to the exploration of in vivo reprogramming. Different cell types behave quite differently, will require different recipes and approaches to reprogramming, different times of exposure, and so forth. It makes it very hard to envisage a near term therapy that operates much like present day gene therapies, meaning one vector and one cargo, as most tissues are comprised of many different cell types all mixed in together. On the other hand, the evidence to date, including that in the paper here, suggests that there are ways to create the desired rejuvenation of epigenetic patterns and mitochondrial function without the risk of somatic cells dedifferentiating into stem cells.

Continue reading “A Great Deal of Work Lies Ahead in the Development of In Vivo Reprogramming as a Therapy” »

Jun 4, 2021

How Going to Mars Could Save Earth

Posted by in categories: 3D printing, nuclear energy, space travel

Article I just wrote about how going to Mars is actually good for protecting life on Earth, too.


People often lump going to Mars or the Moon into a this/that fight when it comes to bettering the life of the Earth and its inhabitants. But, it’s not that simple.

The technology we master in the pursuit of space colonization (starti n g at the Moon and Mars / space stations) will serve to advance that on Earth. The things we learn will help provide a guide for what to do on this future planet, and not just life beyond it. Sure, in-situ resource utilization/production will generate rocket fuel on extraterrestrial bodies. But, things like the NASA Kilopower nuclear reactor can lay the groundwork for alternative energies deployed on Earth at scale. I imagine thorium reactors will follow suit while we still try to deploy fusion at a consumer scale and not just a research basis.

Continue reading “How Going to Mars Could Save Earth” »

Jun 3, 2021

Chinese fusion reactor sets world record

Posted by in categories: nuclear energy, physics, sustainability

China has announced a milestone in the development of clean, sustainable energy by setting a new world record for the longest duration of temperatures needed for fusion to occur.

The Experimental Advanced Superconducting Tokamak (EAST) located in Hefei, Anhui Province, is the successor to HT-7, China’s first superconducting tokamak, which retired in 2013. The Hefei Institutes of Physical Science (HIPS) is conducting the experiment for the Chinese Academy of Sciences (CAS).

Professor Gong Xianzu, a researcher at the CAS Institute of Plasma Physics (IPP) who is leading the project, announced the breakthrough. The reactor achieved not one but two milestones. Firstly it reached a plasma temperature of 120 million degrees Celsius for 101 seconds. This is 20% hotter and five times longer than last year, when EAST managed 100 million degrees Celsius for 20 seconds. Secondly, it reached an even higher peak temperature of 160 million degrees Celsius, lasting for 20 seconds.

May 22, 2021

Researchers develop advanced model to improve safety of next-generation reactors

Posted by in categories: engineering, nuclear energy, sustainability

When one of the largest modern earthquakes struck Japan on March 11, 2011, the nuclear reactors at Fukushima-Daiichi automatically shut down, as designed. The emergency systems, which would have helped maintain the necessary cooling of the core, were destroyed by the subsequent tsunami. Because the reactor could no longer cool itself, the core overheated, resulting in a severe nuclear meltdown, the likes of which haven’t been seen since the Chernobyl disaster in 1986.

Since then, reactors have improved exponentially in terms of safety, sustainability and efficiency. Unlike the light-water reactors at Fukushima, which had liquid coolant and , the current generation of reactors has a variety of coolant options, including molten-salt mixtures, supercritical water and even gases like helium.

Dr. Jean Ragusa and Dr. Mauricio Eduardo Tano Retamales from the Department of Nuclear Engineering at Texas A&M University have been studying a new fourth-generation , -bed reactors. Pebble-bed reactors use spherical fuel elements (known as pebbles) and a fluid coolant (usually a gas).

Page 73 of 134First7071727374757677Last