Toggle light / dark theme

The U.K.’s desire to expand nuclear energy as greener power has gone beyond its November acquisition of China’s nuclear power plant and a 50 percent share in the company planning the megaproject on England’s east coast.

The government is also looking for proposals from teams in the construction and development sectors for small modular nuclear reactor (SMR) technologies, according to a report published by Engineering News-Record on Friday.

Year 2021 viable fusion reactor in a z pinch device which is compact enough to fit in a van or airplane ✈️ 😀


The fusion Z-pinch experiment (FuZE) is a sheared-flow stabilized Z-pinch designed to study the effects of flow stabilization on deuterium plasmas with densities and temperatures high enough to drive nuclear fusion reactions. Results from FuZE show high pinch currents and neutron emission durations thousands of times longer than instability growth times. While these results are consistent with thermonuclear neutron emission, energetically resolved neutron measurements are a stronger constraint on the origin of the fusion production. This stems from the strong anisotropy in energy created in beam-target fusion, compared to the relatively isotropic emission in thermonuclear fusion. In dense Z-pinch plasmas, a potential and undesirable cause of beam-target fusion reactions is the presence of fast-growing, “sausage” instabilities. This work introduces a new method for characterizing beam instabilities by recording individual neutron interactions in plastic scintillator detectors positioned at two different angles around the device chamber. Histograms of the pulse-integral spectra from the two locations are compared using detailed Monte Carlo simulations. These models infer the deuteron beam energy based on differences in the measured neutron spectra at the two angles, thereby discriminating beam-target from thermonuclear production. An analysis of neutron emission profiles from FuZE precludes the presence of deuteron beams with energies greater than 4.65 keV with a statistical uncertainty of 4.15 keV and a systematic uncertainty of 0.53 keV. This analysis demonstrates that axial, beam-target fusion reactions are not the dominant source of neutron emission from FuZE. These data are promising for scaling FuZE up to fusion reactor conditions.

The authors would like to thank Bob Geer and Daniel Behne for technical assistance, as well as Amanda Youmans, Christopher Cooper, and Clément Goyon for advice and discussions. The authors would also like to thank Phil Kerr and Vladimir Mozin for the use of their Thermo Fisher P385 neutron generator, which was important in verifying the ability to measure neutron energy shifts via the pulse integral technique. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency—Energy (ARPA-E), U.S. Department of Energy, under Award Nos. DE-AR-0000571, 18/CJ000/05/05, and DE-AR-0001160. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. U.

A flipping action in a porous material facilitates the passage of normal water to separate it out from heavy water.

A research group led by Susumu Kitagawa of Kyoto University’s Institute for Cell-Material Sciences (iCeMS), Japan and Cheng Gu of South China University of Technology, China have made a material that can effectively separate heavy water from normal water at room temperature. Until now, this process has been very difficult and energy intensive. The findings have implications for industrial – and even biological – processes that involve using different forms of the same molecule. The scientists reported their results in the journal Nature.

Isotopologues are molecules that have the same chemical formula and whose atoms bond in similar arrangements, but at least one of their atoms has a different number of neutrons than the parent molecule. For example, a water molecule (H2O) is formed of one oxygen and two hydrogen atoms. The nucleus of each of the hydrogen atoms contains one proton and no neutrons. In heavy water (D2O), on the other hand, the deuterium (D) atoms are hydrogen isotopes with nuclei containing one proton and one neutron. Heavy water has applications in nuclear reactors, medical imaging, and in biological investigations.

This is a historic milestone in the quest for a clean nuclear energy source.

Scientists at Lawrence Livermore National Laboratory in California have made a major breakthrough in the field of nuclear fusion, sparking hope for a new carbon-free power source.

How did they do it?


llnl.gov.

The team used the world’s largest laser to initiate a fusion reaction that produced more energy than it took to create, marking a historic milestone in the quest for a clean nuclear energy source. Nuclear fusion has long been seen as a potential solution to the world’s energy needs, as it could provide abundant electricity without emitting greenhouse gasses or producing long-lasting nuclear waste.

The breakthrough came in an impossibly small slice of time, less than it takes a beam of light to move an inch. In that tiny moment, nuclear fusion as an energy source went from far-away dream to reality. The world is now grappling with the implications of the historic milestone. For Arthur Pak and the countless other scientists who’ve spent decades getting to this point, the work is just beginning.

Pak and his colleagues at Lawrence Livermore National Laboratory are now faced with a daunting task: Do it again, but better—and bigger.

That means perfecting the use of the world’s largest laser, housed in the lab’s National Ignition Facility that science-fiction fans will recognize from the film “Star Trek: Into Darkness,” when it was used as a set for the warp core of the starship Enterprise. Just after 1 a.m. on Dec. 5, the laser shot 192 beams in three carefully modulated pulses at a cylinder containing a tiny diamond capsule filled with hydrogen, in an attempt to spark the first fusion reaction that produced more than it took to create. It succeeded, starting the path toward what scientists hope will someday be a new, carbon-free power source that will allow humans to harness the same source of energy that lights the stars.

Technology developed at Argonne can help narrow the field of candidates for molten salts, a new study demonstrates.

Scientists are searching for new materials to advance the next generation of nuclear power plants. In a recent study, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory showed how artificial intelligence could help pinpoint the right types of , a key component for advanced nuclear reactors.

The ability to absorb and store heat makes important to and national climate goals. Molten salts can serve as both coolant and fuel in nuclear power reactors that generate electricity without emitting greenhouse gases. They can also store large amounts of energy, which is increasingly needed on an electric grid with fluctuating sources such as wind and solar power.

The three major lessons on energy security.

On October 19, European Commission president Ursula von der Leyen announced that the EU had replaced two-thirds of its Russian gas imports since February by switching to other suppliers. Such a turnaround seemed unattainable last spring when the invasion of Ukraine turned Moscow from an EU business partner into a military threat.


Despite the EU’s reduction of its energy dependence on Russia, there is work to be done in the long term. To achieve autonomy from Russian energy, the Union could learn from the experience of one of its members, Lithuania – a country which, since declaring its independence from the USSR in 1990, has been able to adapt to a complex geopolitical context to ensure its energy security.

The Lithuanian case has three major lessons.

Lesson 1: Don’t give up nuclear power

Lithuania’s path to energy independence has not been easy.

Fusion News overblown.


NEW YORK, Dec 13 (Reuters Breakingviews) — A fusion breakthrough unveiled on Tuesday by the U.S. Department of Energy is a scientific tour de force, and a commercial irrelevancy.

It’s a notable feat that researchers produced more energy from fusing atoms together than they used to start the process. The development has been an elusive goal since the 1930s, promising essentially limitless power from cheap hydrogen found in seawater. One gram of hydrogen theoretically contains as much energy as burning about 10 tons of coal.

To be put into practical use, however, the process needs to be scaled up immensely. That probably will take years, if not decades. And even then, there’s a problem that undermines some of the breathless exuberance over the news.