Toggle light / dark theme

Dramatic advances in quantum computing, smartphones that only need to be charged once a month, trains that levitate and move at superfast speeds. Technological leaps like these could revolutionize society, but they remain largely out of reach as long as superconductivity—the flow of electricity without resistance or energy waste—isn’t fully understood.

One of the major limitations for real-world applications of this technology is that the materials that make superconducting possible typically need to be at extremely cold temperatures to reach that level of electrical efficiency. To get around this limit, researchers need to build a clear picture of what different superconducting materials look like at the atomic scale as they transition through different states of matter to become superconductors.

Scholars in a Brown University lab, working with an international team of scientists, have moved a small step closer to cracking this mystery for a recently discovered family of superconducting Kagome metals. In a new study, they used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of this superconductor at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

If your image of nuclear power is giant, cylindrical concrete cooling towers pouring out steam on a site that takes up hundreds of acres of land, soon there will be an alternative: tiny nuclear reactors that produce only one-hundredth the electricity and can even be delivered on a truck.

Small but meaningful amounts of electricity — nearly enough to run a small campus, a hospital or a military complex, for example — will pulse from a new generation of micronuclear reactors. Now, some universities are taking interest.

“What we see is these advanced reactor technologies having a real future in decarbonizing the energy landscape in the U.S. and around the world,” said Caleb Brooks, a nuclear engineering professor at the University of Illinois at Urbana-Champaign.

A UK firm has announced a world-first set of “super” magnets that can be used for testing nuclear fusion power plants.

Tokamak Energy said the Demo4 magnet has a magnetic field strength that is nearly a million times stronger than the Earth’s magnetic field, making it capable of confining and controlling the extremely hot plasma created during the fusion process.

Nuclear fusion has been hailed as the “holy grail” of clean energy, with scientists working on the technology since the 1950s.

What does the inside of a nuclear fusion reactor look like?

“It looks like the future,” Stuart White, head of communications at Tokamak Energy, told Newsweek. “A spaceship. It’s extremely striking, powerful and exciting. You can’t take your eyes off it.”

Nuclear fusion is a technology that creates energy in the same way as the sun: it occurs when two atoms are thrust together with such force that they combine into a single, larger atom and release huge amounts of energy in the process.

Human civilization has achieved some incredible things during its short reign on this planet. Technological development over the past 5,000 years of human civilization has led our species to dominance of life on Earth and placed us on a pathway to achieving a Type I civilization.

To reach even the basic level of a “Kardashev Type 1 civilization” we must do two things:
Develop more advanced technology and share it with all responsible nations.
Make renewable energy accessible to all parts of the world.

Five hundred years ago, the Aztec civilization believed that the sun and all its power was sustained by blood from human sacrifice.
Today, we know that the sun, along with all other stars, is powered by a reaction called nuclear fusion.
Scientists and engineers have studied the Sun’s fusion process in hopes of developing a way to harness energy from fusion in machines on Earth.

What exactly is nuclear fusion, and how does it work in terms of producing electricity?

Get a glimpse of the future and be amazed by the technological advancements that await us in the year 2100. Our video features top 10 predictions that will shape the world of technology in the next century. From fully immersive virtual reality to advanced artificial intelligence and nanotechnology, this video is packed with exciting insights.

We’ll dive into the possibilities of space colonization and teleportation, explore the potential of augmented reality and fusion energy, and look at the rise of robot assistants and mind uploading. Get ready to be amazed by the holographic displays that will take virtual experiences to a whole new level.

This video is perfect for anyone who wants to stay ahead of the curve and be informed about the future of technology. Subscribe now and turn on the notification bell to never miss an update. Optimize your viewing experience by turning on closed captions.

Leave a comment and let us know which prediction you’re most excited about. Join the discussion and share your thoughts on the future of technology. Don’t wait, watch now!

It is “designed to use an inherently safe and extremely robust fuel form.”

The future of deep space exploration is near. Rolls-Royce revealed a new image of a micro-reactor for space that it says is “designed to use an inherently safe and extremely robust fuel form.”

The iconic engineering firm recently tweeted the image alongside a caption. It is designing the nuclear fission system as part of an agreement it penned with the UK Space Agency in 2021.

Nuclear propulsion systems for space, which harness the energy produced during the splitting of atoms, have great potential for accelerating space travel and reducing transit times. This could be of particular importance when sending humans to Mars… More.


At our StrictlyVC event a few nights ago, Altman was generous with his time, spending an hour with those gathered to talk about the latest at OpenAI (the hottest startup in the world at the moment), as well as answering questions about how his other investments fit into larger themes that he expects to play out — and in the not-distant future.

This is part one of that interview, focused on Altman’s investments, including in Helion Energy, a nuclear fusion company that Altman described at the event as “the other thing beside OpenAI that I spend a lot of time on.” We also talked Twitter, supersonic jets, making babies out of skin cells, and why he’s “not super interested” in crypto.

You can find the second part of our talk, focused on OpenAI, here: https://www.youtube.com/watch?v=ebjkD1Om4uw