Toggle light / dark theme

Memorial Sloan Kettering Cancer Center-led researchers have identified a small molecule called gliocidin that kills glioblastoma cells without damaging healthy cells, potentially offering a new therapeutic avenue for this aggressive brain tumor.

Glioblastoma remains one of the most lethal primary brain tumors, with current therapies failing to significantly improve patient survival rates. Glioblastoma is difficult to treat for several reasons. The tumor consists of many different types of cells, making it difficult for treatments to target them all effectively.

There are few genetic changes in the cancer for drugs to target, and the tumor creates an environment that weakens the body’s immune response against it. Even getting medications near targets in the brain is challenging because the protective blocks entry for most potential drug treatments.

Integrated Information Theory (IIT) offers an explanation for the nature and source of consciousness. Initially proposed by Giulio Tononi in 2004, it claims that consciousness is identical to a certain kind of information, the realization of which requires physical, not merely functional, integration, and which can be measured mathematically according to the phi metric.

The theory attempts a balance between two different sets of convictions. On the one hand, it strives to preserve the Cartesian intuitions that experience is immediate, direct, and unified. This, according to IIT’s proponents and its methodology, rules out accounts of consciousness such as functionalism that explain experience as a system operating in a certain way, as well as ruling out any eliminativist theories that deny the existence of consciousness. On the other hand, IIT takes neuroscientific descriptions of the brain as a starting point for understanding what must be true of a physical system in order for it to be conscious. (Most of IIT’s developers and main proponents are neuroscientists.) IIT’s methodology involves characterizing the fundamentally subjective nature of consciousness and positing the physical attributes necessary for a system to realize it.

In short, according to IIT, consciousness requires a grouping of elements within a system that have physical cause-effect power upon one another. This in turn implies that only reentrant architecture consisting of feedback loops, whether neural or computational, will realize consciousness. Such groupings make a difference to themselves, not just to outside observers. This constitutes integrated information. Of the various groupings within a system that possess such causal power, one will do so maximally. This local maximum of integrated information is identical to consciousness.

The Quickest Route To Healthy


Linda Jiang is Head of Strategy and Government Partnerships, Healthcare, at Lyft (https://www.lyft.com/healthcare), where she’s responsible for accelerating the growth of the business, driving public sector strategy, and partnering with policymakers and regulators to bring access to the rideshare service to millions of people who need it for healthcare access.

Previously, Linda was an early growth operator at healthcare startups, leading strategy for Modern Fertility and consumer marketing for Color Genomics.

Linda began her career as a management consultant at PwC, with clients including academic medical centers, top integrated healthcare systems, medical device companies, and big box retailers, and also had a role in corporate strategy at Twitter.

She holds a Master of Public Health (MPH) and a Bachelor of Science, Neuroscience and Behavioral Biology from Emory University.

In space, astronauts are exposed to extreme stressors our bodies don’t experience on Earth. Microgravity, higher radiation, and a high workload can impact cognitive performance. To find out which cognitive domains are affected by spaceflight, researchers analyzed data from 25 professional astronauts. They found that while on the ISS, astronauts took longer to perform tasks concerned with processing speed, working memory, and attention, but that a six-month stay in space did not result in lasting cognitive impairment once crews returned to Earth.

A stay in space exerts extreme pressures on the human body. Astronauts’ bodies and brains are impacted by radiation, altered gravity, challenging working conditions, and sleep loss – all of which could compromise cognitive functioning. At the same time, they are required to perform complex tasks, and minor mistakes can have devastating consequences.

Little is known, however, about whether astronauts’ cognitive performance changes while in space. Now, working with 25 astronauts who spent an average of six month on the International Space Station (ISS), researchers in the US have examined changes in a wide range of cognitive performance domains. This dataset makes up the largest sample of cognitive performance data from professional astronauts published to date.

To maintain a healthy immune system, doctors advise patients to take vitamins and minerals. Vitamins have many functions that benefit the body, including resisting infection, energy boost, aiding in blood clotting, improving brain function, generation of red blood cells, promoting a healthy gut microbiome, improving wound healing, preventing eye deterioration, and developing strong bones. We can get vitamins from various sources, including orange juice, which is rich in vitamin C, folate, and potassium. Physicians often recommend supplements for patients low on specific vitamins. However, dysregulation of vitamins can weaken the immune system and promote overall bad health. One vitamin in particular that helps maintain cellular function includes B12. This vitamin is essential to generate DNA and red blood cells, and aids in nerve function, energy conversion, and protein metabolism. When a patient has a B12 deficiency it can result in muscle weakness, numbness in hands and feet, difficulty walking, nausea, loss of appetite, and unintentional weight loss. In addition, it can allow the buildup of a small molecule known as methylmalonic acid (MMA).

In healthy tissues, vitamin B12 helps break down MMA. In B12 deficient patients, MMA is increased and can be measured through blood or urine samples. Methylmalonic acid is produced when proteins in your muscle, known as amino acids, are broken down. Tests to determine B12 deficiency or a genetic disorder are done by physicians at birth and after the appearance of symptoms related to B12 deficiency. Interestingly, a group of scientists have discovered a new deleterious role of MMA in lung carcinoma.

A recent publication from Oncogene, by Dr. Ana P. Gomes and others, demonstrated that MMA in aged patients weakens immune cell function and promotes lung cancer progression. Gomes is a professor of molecular oncology at Moffitt Cancer Center in Florida. Her work specifically focuses on understanding metabolic changes as we age and how this change in metabolism influences cancer risk.

In case you thought science was going to take a day off, researchers have just figured out a way of reversing brain aging – in fruit flies, but still.

They previously did something similar in lab mice, claiming to “reverse and repair” damage done by Alzheimer’s disease. The brain is a fascinating thing: it behaves weirdly after midnight, performs a magical reset while sleeping to “save memories,” and automatically corrects spelling errors even when you don’t see them yourself. Whatever next, health experts?!

When a common type of protein builds up in the brain, it stops cells from getting rid of “unnecessary or dysfunctional components,” i.e., waste.

To try everything Brilliant has to offer—free—for a full 30 days, visit https://brilliant.org/ArtemKirsanov. You’ll also get 20% off an annual premium subscription.

Socials:
X/Twitter: https://twitter.com/ArtemKRSV
Patreon: / artemkirsanov.

My name is Artem, I’m a graduate student at NYU Center for Neural Science and researcher at Flatiron Institute (Center for Computational Neuroscience).

In this video, we explore the Nobel Prize-winning Hodgkin-Huxley model, the foundational equation of computational neuroscience that reveals how neurons generate electrical signals. We break down the biophysical principles of neural computation, from membrane voltage to ion channels, showing how mathematical equations capture the elegant dance of charged particles that enables information processing.

Outline:
00:00 Introduction.
01:28 Membrane Voltage.
04:56 Action Potential Overview.
6:24 Equilibrium potential and driving force.
10:11 Voltage-dependent conductance.
16:50 Review.
20:09 Limitations \& Outlook.
21:21 Sponsor: Brilliant.org.
22:44 Outro.

Large language models, a type of AI that analyzes text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a study led by UCL (University College London) researchers.

The findings, published in Nature Human Behaviour, demonstrate that large language models (LLMs) trained on vast datasets of text can distill patterns from , enabling them to forecast scientific outcomes with superhuman accuracy.

The researchers say this highlights their potential as powerful tools for accelerating research, going far beyond just knowledge retrieval.