A revolutionary new theory contradicts a fundamental assumption in neuroscience about how the brain learns. According to researchers at Bar-Ilan University in Israel led by Prof. Ido Kanter, the theory promises to transform our understanding of brain dysfunction and may lead to advanced, faster, deep-learning algorithms.
Category: neuroscience – Page 913
In a paper published on March 15, 2018, in the journal Science, Stanford researchers led by Dr. Dena Leeman showed that intracellular protein aggregates accumulate within the lysosomes of neural stem cells that were previously thought not to suffer from this problem [1].
Intracellular waste disposal 101
Dysfunctional proteins and organelles within a cell constitute intracellular waste that the cell needs to dispose of. To do so, the cell may avail itself of proteasomes and lysosomes. Proteasomes are protein complexes that, with the help of enzymes, break down other, unnecessary proteins into shorter amino acids that can then be recycled to build new, useful proteins. Proteasomes are found within the cell nucleus and in the cytosol—the aqueous solution in which everything in a cell floats. The discovery of proteasomes happened later than that of lysosomes, which, for a while, were thought to be the only cellular waste management systems.
Https://paper.li/e-1437691924#/
In the natural world, intelligence takes many forms. It could be a bat using echolocation to expertly navigate in the dark, or an octopus quickly adapting its behavior to survive in the deep ocean. Likewise, in the computer science world, multiple forms of artificial intelligence are emerging — different networks each trained to excel in a different task. And as will be presented today at the 25th annual meeting of the Cognitive Neuroscience Society (CNS), cognitive neuroscientists increasingly are using those emerging artificial networks to enhance their understanding of one of the most elusive intelligence systems, the human brain.
“The fundamental questions cognitive neuroscientists and computer scientists seek to answer are similar,” says Aude Oliva of MIT. “They have a complex system made of components — for one, it’s called neurons and for the other, it’s called units — and we are doing experiments to try to determine what those components calculate.”
In Oliva’s work, which she is presenting at the CNS symposium, neuroscientists are learning much about the role of contextual clues in human image recognition. By using “artificial neurons” — essentially lines of code, software — with neural network models, they can parse out the various elements that go into recognizing a specific place or object.
A compound in beets that gives the vegetable its distinctive red color could eventually help slow the accumulation of misfolded proteins in the brain, a process that is associated with Alzheimer’s disease. Scientists say this discovery could lead to the development of drugs that could alleviate some of the long-term effects of the disease, the world’s leading cause of dementia.
A lzheimer’s sufferers could once again remember the faces of loved ones, or find their way back home, after scientists developed a way to boost memories.
In a groundbreaking pilot study, US researchers recorded memories as they were being formed and then later played them back into the brains of 10 patients.
They found that it increased memory performance by up to 37 per cent.
Scientists are increasingly betting their time and effort that the way to control the world is through proteins. Proteins are what makes life animated. They take information encoded in DNA and turn it into intricate three-dimensional structures, many of which act as tiny machines. Proteins work to ferry oxygen through the bloodstream, extract energy from food, fire neurons, and attack invaders. One can think of DNA as working in the service of the proteins, carrying the information on how, when and in what quantities to make them.
Living things make thousands of different proteins, but soon there could be many more, as scientists are starting to learn to design new ones from scratch with specific purposes in mind. Some are looking to design new proteins for drugs and vaccines, while others are seeking cleaner catalysts for the chemical industry and new materials.
David Baker, director for the Institute for Protein Design at the University of Washington, compares protein design to the advent of custom tool-making. At some point, proto-humans went beyond merely finding uses for pieces of wood, rock or bone, and started designing tools to suit specific needs — from screwdrivers to sports cars.
A security company wants to modernize the “backward-looking” and “inherently inefficient” video surveillance industry by offering a blockchain-based system which allows users to react to threats in real time.
Faceter’s decentralized surveillance technology – which it claims is a world first for consumers – “gives brains to cameras” by enabling them to instantly detect faces, objects and analyze video feeds. Although some B2B providers do offer similar features, the company claims they are currently too expensive for smaller firms and the public at large because of the “substantial computing resources” such technology needs.
According to Faceter’s white paper, Blockchain has the potential to make this solution affordable for everyone – as computing power for recognition calculations would be generated by a network of miners.
The US military likes to stay at the forefront of the cutting edge of science — most recently investigating ways they can ‘hack’ the human brain and body to make it die slower, and learn faste r.
But in an unexpected twist, it turns out they’re also interested in pushing the limits of quantum mechanics. The Defence Advanced Research Projects Agency (DARPA) has announced it’s funding research into one of the strangest scientific breakthroughs in recent memory — time crystals.
In case you missed it, time crystals made headlines last year when scientists finally made the bizarre objects in the lab, four years after they were first proposed.