Here’s the first map of the magnetic mineral magnetite in the human brain. Turns out that our brain stem may be full of it.

Since the 1950s at least, researchers have speculated that the brain is a kind of computer in which neurons make up complex circuits that perform untold numbers of calculations every second. Decades later, neuroscientists know that these brain circuits exist, yet technical limitations have kept most details of their computations out of reach.
Now, neuroscientists reported December 12 in Cell, they may finally be able to reveal what circuits deep in the brain are up to, thanks in large part to a molecule that lights up brighter than ever before in response to subtle electrical changes that neurons use to perform their compuations.
Currently, one of the best ways to track neurons’ electrical activity is with molecules that light up in the presence of calcium ions, a proxy for a neuron spike, the moment when one neuron passes an electrical signal to another. But calcium flows too slowly to catch all the details of a neuron spike, and it doesn’t respond at all to the subtle electrical changes that lead up to a spike. (One alternative is to implant electrodes, but those implants ultimately damage neurons, and it isn’t practical to place electrodes in more than a handful of neurons at once in living animals.)
Scientists have known for decades that aerobic exercise strengthens the brain and contributes to the growth of new neurons, but few studies have examined how yoga affects the brain. A review of the science finds evidence that yoga enhances many of the same brain structures and functions that benefit from aerobic exercise.
The review, published in the journal Brain Plasticity, focused on 11 studies of the relationship between yoga practice and brain health. Five of the studies engaged individuals with no background in yoga practice in one or more yoga sessions per week over a period of 10–24 weeks, comparing brain health at the beginning and end of the intervention. The other studies measured brain differences between individuals who regularly practice yoga and those who don’t.
Each of the studies used brain-imaging techniques such as MRI, functional MRI or single-photon emission computerized tomography. All involved Hatha yoga, which includes body movements, meditation and breathing exercises.
The idea of a cell therapy for Parkinson’s disease starts out simple: Symptoms of the progressive disease are largely driven by the deaths of dopamine-producing neurons found deep within the brain. With lower levels of the neurotransmitter come the characteristic tremors, rigidity and slow movements.
By replacing those lost nerve cells with new dopamine producers, researchers hope to renew the brain’s connection to the body’s muscles and improve a person’s overall motor function.
But in the brain, everything becomes more complicated. On top of the risk of immune system rejection that comes with any kind of living tissue transplant, it’s important to make sure the implanted cells function correctly and do not pick up any dangerous genetic mutations as they grow.
Fresh insights into damaging proteins that build up in the brains of people with Alzheimer’s disease could aid the quest for treatments.
A study in mice reveals how the two proteins work together to disrupt communication between brain cells.
Scientists observed how proteins—called amyloid beta and tau—team up to hamper key genes responsible for brain messaging. By changing how genes are expressed in the brain, the proteins can affect its normal function.
The procedure, donation after circulatory death or DCD, involves taking organs from a donor whose heart has stopped beating after being taken off of life support after a fatal injury or illness when there is no potential for recovery.
Conventional organ donations occur after brain death, which means that while all brain functions have stopped and the person is legally and clinically dead, machines can continue to keep oxygen and blood flowing throughout the body, preserving the healthy organs for donation.
After a circulatory death, however, organs are deprived of oxygen as the circulatory system shuts down, potentially damaging the donor organs and making it difficult to use them for transplant.
In mouse models of Alzheimer’s disease, the investigational drug candidates known as CMS121 and J147 improve memory and slow the degeneration of brain cells. Now, Salk researchers have shown how these compounds can also slow aging in healthy older mice, blocking the damage to brain cells that normally occurs during aging and restoring the levels of specific molecules to those seen in younger brains.
The research, published last month in the journal eLife, suggests that the drug candidates may be useful for treating a broader array of conditions and points out a new pathway that links normal aging to Alzheimer’s disease.
“This study further validated these two compounds not only as Alzheimer’s drug candidates but also as potentially more widely useful for their anti-aging effects,” says Pamela Maher, a senior staff scientist at Salk and a co-corresponding author of the new paper.
Summary: Researchers reveal the right homologue of the Broca’s area plays a major role in the processing of music.
Source: Max Planck Institute.
Vincent Cheung, along with Angela Friederici, has been investigating non-local dependencies in music and trying to determine how the human brain processes them. In language and music, dependencies are conceptual threads that bind two things together. Non-local dependencies bind non-adjacent items. For example, in pop music, the second instance of a verse, following a chorus, would have a non-local dependency with the first instance of the verse. Experientially, it is clear to us that we are hearing a sequence that we have heard before. According to Cheung, composers use such devices to build up our expectations and elicit strong emotional responses to the music. But how does the brain recognize these patterns and what does this have to do with Paul Broca?