Toggle light / dark theme

The beginning of a new paradigm for understanding the brain

None.


In a new article published in eNeuro, fifteen leading scientists of the European Human Brain Project (HBP) outline how a new culture of collaboration and an era of digitalization has transformed neuroscience research over the last decade.

“The way we study the brain has changed fundamentally in recent years,” says first author Katrin Amunts, HBP Scientific Director, Director of the C. and O. Vogt-Institute of Brain Research, Düsseldorf and Director at the Institute of Neuroscience and Medicine at Research Centre Jülich. “In the past, separate communities have often focused on specific aspects of neuroscience, and the problem was always how to link the different worlds, for example, in order to explain a certain cognitive function in terms of the underlying neurobiology.”

The coming decade of digital brain research — A vision for neuroscience at the intersection of technology and computing

Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade.

Long-Suspected Turbocharger for Memory Found in Brain Cells of Mice

Summary: Floods of calcium that originate from hippocampal neurons can also boost learning, a new study reports.

Source: Columbia University.

Scientists have long known that learning requires the flow of calcium into and out of brain cells. But researchers at Columbia’s Zuckerman Institute have now discovered that floods of calcium originating from within neurons can also boost learning. The finding emerged from studies of how mice remember new places they explore.

Exocortex: Thought this might be of some interest

An is an external information processing system that augments the brain’s biological high-level cognitive processes.

An individual’s would be comprised of external memory modules 0, processors 0, IO devices and software systems that would interact with, and augment, a person’s biological brain. Typically this interaction is described as being conducted through a direct brain-computer interface 0, making these extensions functionally part of the individual’s mind.

Individuals with significant exocortices can be classified as transhuman beings.

Neurons That Drive Competition and Social Behavior Within Groups Identified

Summary: Neurons in the anterior cingulate store social rank information to inform upcoming decisions. The findings could shed new light on social deficits associated with ASD and schizophrenia.

Source: Mass General.

New research in mice has identified neurons in the brain that influence competitive interactions between individuals and that play a critical role in shaping the social behavior of groups.

Ready, Set…Go! Brain Circuit That Triggers the Execution of Planned Movement Discovered

Summary: Researchers have identified a neural circuit that helps suppress the execution of planned actions in response to specific cues.

Source: Max Planck Florida.

Planned movement is essential to our daily lives, and it often requires delayed execution. As children, we stood crouched and ready but waited for the shout of “GO!” before sprinting from the starting line. As adults, we wait until the traffic light turns green before making a turn. In both situations, the brain has planned our precise movements but suppresses their execution until a specific cue (e.g., the shout of “GO!” or the green light).

A talk by David Pearce for the Stepping into the Future conference 2022

Synopsis: No sentient being in the evolutionary history of life has enjoyed good health as defined by the World Health Organization. The founding constitution of the World Health Organization commits the international community to a daringly ambitious conception of health: “a state of complete physical, mental and social wellbeing”. Health as so conceived is inconsistent with evolution via natural selection. Lifelong good health is inconsistent with a Darwinian genome. Indeed, the vision of the World Health Organization evokes the World Transhumanist Association. Transhumanists aspire to a civilization of superhappiness, superlongevity and superintelligence; but even an architecture of mind based on information-sensitive gradients of bliss cannot yield complete well-being. Post-Darwinian life will be sublime, but “complete” well-being is posthuman – more akin to Buddhist nirvana. So the aim of this talk is twofold. First, I shall explore the therapeutic interventions needed to underwrite the WHO conception of good health for everyone – or rather, a recognisable approximation of lifelong good health. What genes, allelic combinations and metabolic pathways must be targeted to deliver a biohappiness revolution: life based entirely on gradients of well-being? How can we devise a more civilized signalling system for human and nonhuman animal life than gradients of mental and physical pain? Secondly, how can genome reformists shift the Overton window of political discourse in favour of hedonic uplift? How can prospective parents worldwide – and the World Health Organization – be encouraged to embrace genome reform? For only germline engineering can fix the problem of suffering and create a happy biosphere for all sentient beings.

The End of Suffering – Genome Reform and the Future of Sentience – David Pearce

Mapping how the 100 billion cells in the brain all fit together is the brave new world of neuroscience

These steps are repeated for each cell type, creating a richer and more complete map of the brain with each run-through.

Working together to build a brain map

Scientists now have the tools to examine the entire brain in very fine detail. There has been considerable effort to coordinate and pool data from brain mapping research labs to create comprehensive brain maps. For example, the U.S. BRAIN Initiative created the BRAIN Initiative Cell Census Network (BICCN) in which my lab participates. Collaborating research groups in the network recently released the most comprehensive map of cell types in the brain’s motor cortex across humans, monkeys and mice.

/* */