Toggle light / dark theme

New gene-editing tools delete long stretches of DNA

Two new methods make it possible to delete long sections of the genome, expanding the capabilities of the gene editor CRISPR. The techniques could lead to therapies that excise large insertions or duplications tied to autism, such as the DNA repeats that underlie fragile X syndrome.

To remove a segment of DNA, CRISPR systems typically use an enzyme called Cas9 to snip double-stranded DNA at two target sites. The cell’s own repair machinery can then join the cut ends, omitting the intervening sequence. But this process is error prone and can insert or delete unintended segments of DNA, called ‘indels,’ or rearrange large sections of the genome. Snipping double-stranded DNA can also cause cell death.

A different CRISPR-based system called ‘prime editing’ can make DNA repair more precise. In one version of the technique, a protein complex called a prime editor cuts only one strand of DNA at one of the two sites and the opposite strand at the other site. The prime editor adds a sequence to one of the cut strands to guide the repair.

The Connection Between Tesla’s New Phone Model Pi And Neuralink

The Connection Between Tesla’s New Phone Model Pi And Neuralink: So Elon has been one busy boy lately, from his incredible Twitter Poll the other day, to the subsequent selling of nearly 5billion in Tesla Shares. But one announcement that went under the radar updates to the rumored Tesla Pi.

So why would you want a phone from Tesla, well the same reason people have an iPhone with their iMac and their iWatch and their iTV sorry Apple TV…it’s the ecosystem, it’s the seamless transition.

Except we now going from your phone to your car, to a satellite to potentially directly to your brain. Now it’s still early days so information is scarce on exactly what will be included, however, information has leaked recently about possible features and I am excited.

You don’t have free will, but don’t worry

In this video I explain why free will is incompatible with the currently known laws of nature and why the idea makes no sense anyway. However, you don’t need free will to act responsibly and to live a happy life, and I will tell you why.

Support me on Patreon: https://www.patreon.com/Sabine.

The reference I mentioned is here:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239816/

#physics #science #philosophy.

0:00 Intro and Content Summary.

Brain Simulation

Can you imagine a brain and its workings being replicated on a computer? That is what the EBRAINS Cellular Level Simulation Platform aims to do. The Platform is available to researchers worldwide, so that they can compare their experimental results with model predictions and conduct investigations that are not possible experimentally.

Simulation also aims to replicate work on animal models, such as the mouse. In addition, the computing environment used for simulation offers the possibility of studying disease processes electronically.

However, the challenge is a complex one, as the human brain contains 86 billion brain cells (known as neurons) each with an average of 7,000 connections to other neurons (known as synapses). Current computer power is insufficient to model a entire human brain at this level of interconnectedness.

Brains of smarter people have bigger and faster neurons

None.


Our brain works through the activity of its almost 100 billion neurons that each collect, process and pass on information in the form of electrical signals. But so far, not much had been known about how the differences in the properties of these cells from person to person matter for human cognitive abilities like intelligence.

Some evidence had suggested that the size of so-called dendrites, the long branched out protrusions through which each neuron receives signals from thousands of other cells, might play a role: Especially in brain areas that integrate different types of information, such as the frontal and temporal lobes, brain cells have bigger dendrites. In these brain areas the cortex, where most of the neurons are, is also thicker in people with higher IQ. Theoretical studies additionally predicted that larger dendrites may help cells to initiate electrical signals faster.

But because of the very difficult access to human living neurons it was an open question until now whether any of these cellular properties could be proven to actually relate to human intelligence.

How To Learn Anything Faster Like Elon Musk

Everyone talks about learning methods, but few people can find realistic and genuine methods that provide a net profit in the types of information and application.

Elon Musk has broken through that barrier by employing learning techniques that have been proven time and time again to be successful. Musk may be said to have taken use of his education by becoming a disruptor. He and his businesses have transformed entire industries, such as transportation, energy, and space.

He recently stated at a press conference that his plans for his biotech company, Neuralink, are proceeding well, implying that he will likely move his focus in the near future to yet another sector. Musk is, without even a doubt, a once-in-a-generation genius. Possibly on par with Nikola Tesla, Albert Einstein, and Isaac Newton. He tackles things in a different way than the typical entrepreneur.

The New Tesla Model P Phone is connected to Your Brain!

The new Tesla Model P phone is coming. The best news for Tesla fans.

Designer Antonio De Rose and his ADR Studio Design lab released a clone of the Tesla Phone. It’s fun to show off ADR’s continued design skills.

Rumors are surfacing that Tesla really is planning to make a smartphone. Already, ADR’s concept images are looking a whole lot cooler. Especially for the Tesla fans.

Joscha Bach — Reconciling consciousness with physicalism

Speaking at the 6th International FQXi Conference, “Mind Matters: Intelligence and Agency in the Physical World.”

The Foundational Questions Institute (FQXi) catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality but unlikely to be supported by conventional funding sources.

Please join us at www.fqxi.org!

Little-Known Glial Cells Are Critical Regulators of Heart Development and Function

Discovery suggests glial cells may be important in other organs as well.

Glial cells in the heart help regulate heart rate and rhythm, and drive its development in the embryo, according to a new study publishing today (November 18th, 2021) in the open-access journal PLOS Biology by Nina Kikel-Coury, Cody Smith and colleagues at the University of Notre Dame. The discovery provides the most detailed portrait yet of a critical population of cells that had been previously poorly understood.

Glia are a diverse set of cell types, originally named after the Greek word for glue, and include cells that surround and nourish neurons, and others that mount immune responses within the central nervous system. In the peripheral nervous system, glia are present and presumably active in multiple organs, including the gut, pancreas, spleen, and lungs, although their function is not clear in most cases.