Toggle light / dark theme

Circa 2018

Livescience.com | By LIVESCIENCE


A new 3D-printing technique can create tissues as soft as a human’s squishy brain or spongy lungs — something that has not been possible before.

“Additive manufacturing,” or 3D printing, promises to allow doctors to produce tailored organs for patients using the patients’ own cells, which could help bring down the severe shortage of organs available for people who need transplants.

The replacement of lost neurons is a holy grail for neuroscience. A new promising approach is the conversion of glial cells into new neurons. Improving the efficiency of this conversion or reprogramming after brain injury is an important step towards developing reliable regenerative medicine therapies. Researchers at Helmholtz Zentrum München and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism. By expressing neuron-enriched mitochondrial proteins at an early stage of the direct reprogramming process, the researchers achieved a four times higher conversion rate and simultaneously increased the speed of reprogramming.

Neurons (nerve cells) have very important functions in the brain such as information processing. Many brain diseases, injuries and neurodegenerative processes, are characterized by the loss of neurons that are not replaced. Approaches in regenerative medicine therefore aim to reconstitute the neurons by transplantation, stem cell differentiation or direct conversion of endogenous non-neuronal cell types into functional neurons.

Researchers at Helmholtz Zentrum München and LMU are pioneering the field of direct conversion of glial cells into neurons which they have originally discovered. Glia are the most abundant cell type in the brain and can proliferate upon injury. Currently, researchers are able to convert glia cells into neurons — but during the process many cells die. This means that only few glial cells convert into functional nerve cells, making the process inefficient.

Here are just a few ways exercise changes the structure of our brain.

Memory

Many studies suggest that exercise can help protect our memory as we age. This is because exercise has been shown to prevent the loss of total brain volume (which can lead to lower cognitive function), as well as preventing shrinkage in specific brain regions associated with memory. For example, one magnetic resonance imaging (MRI) scan study revealed that in older adults, six months of exercise training increases brain volume.

Merriam-Webster’s defines a time warp as a “discontinuity, suspension or anomaly” in the otherwise normal passage of time; this year all three terms could apply. It seems like March happened 10 years ago; everyday may as well be Wednesday, and still, somehow, here come the holidays — fast, just like every year.

Some bard or novelist may yet come forth to help explain the paradoxes of pandemic time, both its Groundhog Days and the blurs of stress and fear for those on the front lines, or who had infectious people in their household. But brain science also has something to say about the relationship between perceived time and the Greenwich Mean variety, and why the two may slip out of sync.

In a new study, a research team based in Dallas reported the first strong evidence to date of so-called “time cells” in the human brain. The finding, posted by the journal PNAS, was not unexpected: In recent years, several research groups have isolated neurons in rodents that track time intervals. It’s where the scientists look for these cells, and how they identified them, that provide some insight into the subjective experiences of time.

China livestreamed footage of its new manned submersible parked at the bottom of the Mariana Trench on Friday, part of a historic mission into the deepest underwater valley on the planet.

The “Fendouzhe”, or “Striver”, descended more than 10,000 metres (about 33,000 feet) into the submarine trench in the western Pacific Ocean with three researchers on board, state broadcaster CCTV said.

Only a handful of people have ever visited the bottom of the Mariana Trench, a crescent-shaped depression in the Earth’s crust that is deeper than Mount Everest is high and more than 2,550 kilometres (1,600 miles) long.

In their paper published in Frontiers of Physics, Franco Vazza (astrophysicist at the University of Bologna) and Alberto Feletti (neurosurgeon at the University of Verona) investigated the similarities between two of the most challenging and complex systems in nature: the cosmic network of galaxies and the network of neuronal cells in the human brain.

Despite the substantial difference in scale between the two networks (more than 27 orders of magnitude), their quantitative analysis, which sits at the crossroads of cosmology and neurosurgery, suggests that diverse physical processes can build structures characterized by similar levels of complexity and self-organization.

The human brain functions thanks to its wide neuronal network that is deemed to contain approximately 69 billion neurons. On the other hand, the observable universe can count upon a cosmic web of at least 100 billion galaxies. Within both systems, only 30% of their masses are composed of galaxies and neurons. Within both systems, galaxies and neurons arrange themselves in long filaments or nodes between the filaments. Finally, within both systems, 70% of the distribution of mass or energy is composed of components playing an apparently passive role: water in the brain and dark energy in the observable Universe.